
Compiler Notes

ThanhVu Nguyen

April 30, 2021

Contents

1 Optimizations 2
1.1 Intermediate Representation (IR) . 2

1.1.1 Three-Address IR . 2
1.2 Optimization Overview . 2

1.2.1 3-address code . 3
1.2.2 Basic Block . 3
1.2.3 Control-Flow Graph . 4
1.2.4 3 granularity levels of optimizations . 4

1.3 Local Optimization: (optimization applied to basic block) . 4
1.3.1 Algebraic Simplifications . 4
1.3.2 Constant Folding . 5
1.3.3 Unreachable Examples . 5
1.3.4 Single Assignment form . 5
1.3.5 Optimizations on SA blocks . 5

1.4 Global Optimization . 7
1.4.1 Dataflow Analysis . 7

1.5 Constant Propagation . 8
1.5.1 Algorithm . 11
1.5.2 Orderings . 11
1.5.3 Loops . 12

1.6 Liveness Analysis . 13
1.6.1 Definition . 13
1.6.2 Algorithm . 15
1.6.3 Summary . 16

2 Memory Management / Garbage Collection 17
2.1 Mark and Sweep . 18
2.2 Stop and Copy . 19
2.3 Reference Count . 20

3 Cool Extensions / Java 21
3.1 Java . 21
3.2 (Java) Arrays . 22
3.3 Java Exceptions . 22

1

Chapter 1

Optimizations

• recall 5 phases of compiler: lexer, parser, (type checker, operational semantics), optimization, translate
to target machine code (ASM)

• modern compilers: most actions happen in optimization phase

1.1 Intermediate Representation (IR)

• provides an intermediate level of abstraction

• has more details than the source code

– Optimizations happen on the IR

• but less details than the target (machine, or assembly code) ...

1.1.1 Three-Address IR

• every instructions has the form

x := y op z # binary , e.g., x:= y + z

x := op y # unary , e.g., y := -y

– y,z are registers or constants

• compound expression x + y * z is translated to:

t1 := y * z

t2 := x + t1

1.2 Optimization Overview

• Largest (most complicated) phase of compiler

• Where to perform optimization

– On AST:

∗ Pro: Machine independent

∗ Con: Too high level (cannot too too much optimization)

2

– On ASM:

∗ Pro: low level, expose many details and optimization opportunies

∗ Con: machine dependent, reimplement the optimization if switch to a different target

– On IR:

∗ Pro: machine independent

∗ Pro: low level enough to expose optimization opportunties

1.2.1 3-address code

P -> S P | S

S -> id := id op id #op are things like +, -, * ...

| id := op id

| id := id

| push id

| id := pop

| if id relop id goto L # relop < = > ...

| L:

| jump L

1.2.2 Basic Block

A basic block is a maximal sequence of instructions with

• no label (except in the first instruction)

• no jump (except in the last instruction)

L:

....

....

....

jump M

• cannot jump into a middle of a block (except at the beginning)

• cannot jump out of a middlew of a block (except at the end)

• Consider this basic block

L: (1)

t := 2 * x (2)

w := t + x (3)

if w > 0 goto to L’ (4)

• Because (3) executes AFTER (2), we can

– change (3) to w := 3 * x

– remove 2 (assuming t is not used anywhere else)

3

1.2.3 Control-Flow Graph

• A Control-Flow graph (CFG) is a directed graph

– basic blocks are nodes

– edge from a block A to a block if the execution can pass from the last instruction in A to the first
instruction in B

∗ E.g., the last instruction is ‘jump Lb‘

– We can represent the body of a method (or function or procedure) as a CFG

• Goals of optimization

– Minimize Execution time (most often)

– Minimize Code size (e.g., embedded system)

– Minimize Operations to Disks (e.g., Database)

– Minimize Power Consumption (e.g., sensor, smart phones, watches)

– Important: Need to preserve the semantics of the program

∗ whatever results we get from the original one, we need to get the same results in the optimiza-
tion version

1.2.4 3 granularity levels of optimizations

1. Local optimizations: Apply optimization to basic block in isolation

2. Global optimizations: Apply optimization to the CFG in isolation

3. Inter-procedural optimizations: Apply optimization to the entire program (consists multiple methods
and functions)

• Most compilers do (1: local), many do (2: global), very few do (3)

• In practice, people DO NOT use the fanciest/most optimized algorithms

– They have low pay-offs

– Too hard/complex to implement (this might affect correctness preservation)

– Their analyses too expensive during compilation time

– Goal: maximum benefit for minimum cost

1.3 Local Optimization: (optimization applied to basic block)

1.3.1 Algebraic Simplifications

• can delete some statements

x := x + 0 # or x:= 0 + x

x := x * 1 # or x:= 1 * x

• can simplify some statements

x := x * 0 => x := 0

x := y ** 2 => x := y * y # make call to library (expensive operation),

usually has loop to do exp

x := x * 8 => x := x << 3 # on some machines << is faster than *modern computers)

x := x * 15 => x := x << 4; x := t - x

4

1.3.2 Constant Folding

• operations on constants can be computed at compile time

– if there is a statement x := y op z, where y and z are constants, then y op z can be computed
at compile time

– Example:

x : = 2 + 3 => x := 5

if 2 > 0: code => if true: code => code

if 2 < 0: code => if false: code => code never get executed

• Constant folding can be dangerous (gives different results)

– Compile program on machine X

– Run the compiled program on machine Y

– X and Y might have diff architectures

∗ a := 1.5 + 3.7 => a := 5.2 on X

∗ a := 1.5 + 3.7 => a: 5.1999 on Y

∗ a = "1.5 + 3.7"

1.3.3 Unreachable Examples

• debug macro

#define DEBUG 0

if (DEBUG) then

• libraries (not everything in the library are used)

1.3.4 Single Assignment form

• each register (id) occurs only ONCE on the left-hand side of an assignment

x := z + y => b := z + y

a := x => a := b

x := 2 * x => x := 2 * b

• converting to SA could be tricky in many code regions (e.g., within loops)

1.3.5 Optimizations on SA blocks

Common Subexpression Elimination

• if a basic block is in SA form

• a definition x := is the first use of x in a block

• then when 2 assignments have the same rhs, then they compute the same value

x := y + z => x:= y + z

... => ...

w := y + z => w:= x

5

Copy Propagation

b := z + y => b := z + y

a := b => a := b

x := 2 * a => x := 2 * b

• only useful for enabling other optimizations

– eliminate dead code

– constant folding

• Example

a := 5 a := 5

x := 2 * a ===> x := 10

y := x + 6 y := 16

t := x * y t := 160

Dead code elimination

• if w:=rhs appears in a basic block and w does not appear anywhere else, then w:=rhs is dead and can
be removed

Summary for local optimization

• each local optimization does little thing by itself

• but they interact (performing an optimization enables another)

• compiler: repeat optimization until no other improvement is possible

– but usually compilers has heuristics to determine when to stop

Inclass Example

initial

a := x ** 2

b := 3

c := x

d := c * c

e := b * 2

f := a + d

g := e * f

final version

a := x * x

g := 12 * a

....

6

Peephole Optimization

• Peephole: is a short sequence of (usually contiguous) instructions

• The compiler replaces that peephole (sequence) with another one that is equivalent (but faster)

– i1,...,in -> j1,...,jm

• Peephole is often performed on assembly code

• Examples

1

a := b => a := b

b := a

2

a := a + 1 => a:= a + 3

a := a + 2

• Just like local optimization, peephole opt must be applied repeatedly for maximum effect

• “Optimization” is misnamed

– Compiler does not produce an “optimal” version

– it only attempts to improve the code by repeatedly applying various optimization techniques

1.4 Global Optimization

1.4.1 Dataflow Analysis

x:=3

B > 0

/ \

/ \

Y:= Z + W Y:=0

\ /

\ /

A := 2 * x # can replace x with 3

• To replace a use of a variable x by a constant k, we need to ensure that

– on every path to the use of x, the last assignment to x has the form

x := k

• dataflow analysis (global)

– an analysis of the entire control flow graph

7

x:=3

B > 0

/ \

/ \

Y:= Z + W Y:=0

x:=4 /

\ /

A := 2 * x # cannot replace x with anything

• Global optimization tasks (e.g., dataflow anlaysis) have shared traits

– to make some optimization at a location X, then we need to know the properties at X (we need to
know the invariant properties at X)

– requires knowledge of the entire program

– it’s OK to be conservative. If the compiler doesn’t know what is true, then it will say it doesn’t
know.

∗ always safe to say it doesn’t know.

1.5 Constant Propagation

• To replace a use of a variable x by a constant k, we need to ensure that

– on every path to the use of x, the last assignment to x has the form x := k

• The property that we are interested in is checking if x := k (at some location L)?

• 3 Values that the analysis can give at location L about the property x:=k

– BOTTOM ⊥: this location is NOT reachable

– k: x == k

– TOP >: no idea what x could be here

Example

[x = TOP]

x:=3

[x == 3]

B > 0

[x == 3]

/ \

/ \

Y:= Z + W Y:=0

[x==3] [x ==3]

x:=4

[x==4] /

\ /

[x==TOP]

A := 2 * x

• Given global constant information, it is easy to perform the optimization

8

– Simply inspect the x = ? associated with a statement using x

– If x is constant at that point replace that use of x by the constant

• But how do we compute the properties x = ?

Constant Propagation Rules

• The analysis of a complicated program can be expressed as a combination of simple rules relating the
change in information between adjacent statements.

• Idea: “push” or “transfer” information from one stmt to the next

– For each stmt s, compute information about the value of x before and after s

– C(s,x,in) = value of x before s

– C(s,x,out) = value of x after s

• Define transfer functions (rules) that transfer information one statement to another

– In the following rules, let statement s have immediate predecessor statements p1,...,pn

– Rules 1-4 defined below relate the out of one statement to the in of the next statement

– Rules 5-8 defined below relate the in of a statement to the out of the same statement

1. R1: if C(pi, x, out) = S for any i, then C(s, x, in) = S

Alex Aiken

Constant Propagation

if C(pi, x, out) = S

 for any i, then C(s, x, in) = S

 s

Rule 1

2. R2: if C(pi, x, out) = c & C(pj, x, out) = d & d <> c then C(s, x, in) = S

Alex Aiken

Constant Propagation

if C(pi, x, out) = c & C(pj, x, out) = d & d <> c

then C(s, x, in) = S

 s

Rule 2

3. R3: if C(pi, x, out) = c or ⊥ for all i, then C(s, x, in) = c

Alex Aiken

Constant Propagation

if C(pi, x, out) = c or z for all i,

then C(s, x, in) = c

 s

Rule 3

4. R4: if C(pi, x, out) = ⊥ for all i, then C(s, x, in) = ⊥

Alex Aiken

Constant Propagation

if C(pi, x, out) = z for all i,

then C(s, x, in) = z

 s

Rule 4

9

5. R5: C(s, x, out) = ⊥ if C(s, x, in) = ⊥

Alex Aiken

Constant Propagation

 C(s, x, out) = z if C(s, x, in) = z

s

Rule 5

6. R6: C(x := c, x, out) = c if c is a constant

Alex Aiken

Constant Propagation

 C(x := c, x, out) = c if c is a constant

x := c

Rule 6

7. R7: C(x:=f(...), x, out) = >

Alex Aiken

Constant Propagation

 C(x := f(…), x, out) = S

x := f(…)

Rule 7

8. R8: C(y:=...,x,out) = C(y:=...,x,in) if x <> y

Alex Aiken

Constant Propagation

 C(y := …, x, out) = C(y := …, x, in) if x <> y

y := . . .

Rule 8

10

1.5.1 Algorithm

1. For every entry s to the program, set C(s, x, in) = >

2. Set C(s, x, in) = C(s, x, out) = ⊥ everywhere else

3. Repeat until all points satisfy rules 1-8:

• Pick s not satisfying 1-8 and update using the appropriate rule

Alex Aiken

Constant Propagation

X := 3

B > 0

Y := Z + W

X := 4 Y := 0

A := 2 * X

1.5.2 Orderings

• We can simplify the presentation of the analysis by ordering the (abstract) values: ⊥ < c < >

• > is the greatest value, ⊥ is the least, and allconstants are in between and incomparable

• Let lub be the least-upperbound in this ordering

• Rules 1-4 can be written using lub:

C(s, x, in) = lub C(p, x, out) | p is a predecessor of s

• Lub also explains why the algorithm terminates

– Values start as ⊥ and only increase

– ⊥ can change to a constant, and a constant to >
– Thus, C(s, x, in/out) can change at most twice

– Thus the constant propagation algorithm is linear in (non-loop) program size

Number of steps = Number of C(...) values computed *2 = Number of program statements * 4

11

1.5.3 Loops

Alex Aiken

Analysis of Loops

• To understand why we need z, look at a loop

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

A < B

• Consider the statement Y := 0

• To compute whether X is constant at this point, we need to know whether X is constant at the two
predecessors

– X := 3

– A := 2 * X

• Cycle: but the info for A := 2 * X depends on its predecessors, including Y := 0

Sol : Initialization of everything to ⊥ helps break the cycle

• Because of cycles, all points must have values at all times

• Intuitively, assigning some initial value allows the analysis to break cycles

• The initial value ⊥ means “So far as we know, control neeer reaches this point”

12

Alex Aiken

Analysis of Loops

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

A < B

1.6 Liveness Analysis

1.6.1 Definition

• Once constants have been globally propagated, we want to eliminate dead code

Alex Aiken

Liveness Analysis

Once constants have been globally propagated, we would like to
eliminate dead code

After constant propagation, X := 3 is dead
(assuming X not used elsewhere)

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

– After constant propagation, X := 3 is dead (assuming X not used elsewhere)

• Example

13

Alex Aiken

Liveness Analysis

• The first value of x is dead
(never used)

• The second value of x is live
(may be used)

• Liveness is an important
concept

X := 3

X := 4

 Y := X

– The first value of x is dead (never used)

– The second value of x is live (may be used)

• Def: a variable x is live at statement s if

– There exists a statement s’ that uses x

– There is a path from s to s’ that has no intervening assignment to x

– A statement x:=... is dead code if x is dead after the assignment

∗ Dead statements can be deleted from the program

Liveness Rules

• We can express liveness in terms of information transferred between adjacent statements, just as in
copy propagation

• Liveness is simpler than constant propagation, since it is a boolean property (true or false)

• Define transfer functions (rules) that transfer information one statement to another

1. R1: L(p, x, out) = ∨ L(s, x, in) | s a successor of p

Alex Aiken

Liveness Analysis

L(p, x, out) = � { L(s, x, in) | s a successor of p }

p

Rule 1

2. R2: L(s, x, in) = true if s refers to x on the rhs

14

Alex Aiken

Liveness Analysis

 L(s, x, in) = true if s refers to x on the rhs

…:= f(x)

Rule 2

3. R3: L(x := e, x, in) = false if e does not refer to x

Alex Aiken

Liveness Analysis

 L(x := e, x, in) = false if e does not refer to x

x := e

Rule 3

4. R4: L(s, x, in) = L(s, x, out) if s does not refer to x

Alex Aiken

Liveness Analysis

 L(s, x, in) = L(s, x, out) if s does not refer to x

s

Rule 4

1.6.2 Algorithm

1. Let all L(...) = false initially

2. Repeat until all statements s satisfy rules 1-4:

• Pick s not satisfying 1-4 and update using the appropriate rule

15

Alex Aiken

Liveness Analysis

Termination

• A value can change from false to true, but not the other way around

• Each value can change only once, so termination is guaranteed

1.6.3 Summary

2 kinds of analysis

1. Constant propagation is a forwards analysis: information is pushed from inputs to outputs

2. Liveness is a backwards analysis: information is pushed from outputs back towards inputs

16

Chapter 2

Memory Management / Garbage
Collection

• new: allocate space

• Garbage Collection

• C and C++ programs have many memory-related bugs

– double free , use after free, dangling pointer

– overwrite part of data structure by accidents . . .

– OpenSSL Heartbleed

– Apache Optionbleed

• Memory bugs are REALY hard to find

– x = 3

– y = 3

– bugs happen in the FUTURE

• Automatic Memory Management

– 1950s . . .

– Become mainstream with popularity of Java (1990’s, Gosling?)

• Managing Memory

– When an object is created, its runtime environment will allocate unused space for the object (new
X)

– after a while there will be no more unused space

– Automatic MM attempt to determine which space is UNUSED (garbage) and automatically delete
(free) it

– How do we will when an object or space that object points to will never be used again ?

• Reachability Algorithms

– A object X is reachable iff

17

∗ something (a variable) points to it

∗ another reachable object Y contains a pointer to X

– We can find all reachable objects by starting with all variables and follow their pointers

– An unreachable object can never be used, i.e., garbage

2.1 Mark and Sweep

• Mark and Sweep: when memory runs out, GC executes two phases:

1. mark phase: traces all reachable objects

2. sweep phase: collects garbage object

• Every object will have an extra bit: the mark bit

• Mark phase

– initially all mark bit is 0

– start from some root object (variable), traverse everything that variable can reach (point to)

∗ mark those as 1

• Sweep phase

– look at objects with mark bit 0 (garbage)

– add them to a free list

– objects with mark bit 1 reset to 0

Alex Aiken

Mark and Sweep

free

0 0 0 0 0 0

After sweep:

root A B C D E F

free

1 0 1 0 1 0 root A B C D E F

After mark:

free

0 0 0 0 0 0 root A B C D E F

• A serious problem with the mark phase

– it is invoked when we are out of space

– yet it needs space to construct the todo list

– the size of the todo list is unbounded so we cannot reserve space for it a priori

• Solution:

– The todo list is used as an auxiliary data structure to perform the reachability analysis

– There is a trick that allows the auxiliary data to be stored in the objects themselves

∗ pointer reversal: when a pointer is followed it is reversed to point to its parent

– Similarly, the free list is stored in the free objects themselves

18

Pros and Cons

• Cons: Fragment memory

– Space for a new object is allocated from the new list

– a block large enough is picked

– an area of the necessary size is allocated from it

– the left-over is put back in the free list

• Pros: objects are not moved during GC

– no need to update the pointers to objects

– works for languages like C and C++

2.2 Stop and Copy

• Memory is organized into two areas

– oldspace: used for allocation

– new space: used as a reserve for GC

• The heap pointer points to the next free word in the old space

• Allocation just advances the heap pointer

Idea

• Starts when the old space is full

• Copies all reachable objects from old space into new space

– garbage is left behind

– after the copy phase the new space uses less space than the old one before the collection

• After the copy the roles of the old and new spaces are reversed and the program resumes

Alex Aiken

Stop and Copy

A B C D F root E

Before collection:

new space

A C F

root

new space

After collection:

free

heap pointer

• We need to find all the reachable objects, as for mark and sweep

• As we find a reachable object we copy it into the new space

– And we have to fix ALL pointers pointing to it!

• As we copy an object we store in the old copy a forwarding pointer to the new copy

– when we later reach an object with a forwarding pointer we know it was already copied

– same idea when we move to a new place, we place a fowarding address on the old address

19

Pros and Cons

• As with mark and sweep, we must be able to tell how large an object is when we scan it

– and we must also know where the pointers are inside the object

• We must also copy any objects pointed to by the stack and update pointers in the stack

– this can be an expensive operation

• Pros:

– Stop and copy is generally believed to be the fastest GC technique

– Allocation is very cheap (just increment the heap pointer)

– Collection is relatively cheap

∗ especially if there is a lot of garbage

∗ only touch reachable objects

• Cons: some languages do not allow copying

– C,C++

2.3 Reference Count

• Rather that wait for memory to be exhausted, try to collect an object when there are no more pointers
to it

• Reference Count: Store in each object the number of pointers to that object

• Each assignment operation manipulates the reference count

Idea:

• new returns an object with reference count 1

• Let rc(x) be the reference count of x

• Assume x, y point to objects o, p

• Every assignment x <- y becomes:

rc(p) <- rc(p) + 1

rc(o) <- rc(o) - 1

if(rc(o) == 0) then free o

x <- y

Pros and Cons

• Pros:

– easy to implement

– collects garbage incrementally without large pauses in the execution

• Cons:

– cannot collect circular structures (e.g., circularly linked list)

– manipulating reference counts at each assignment is very slow

20

Chapter 3

Cool Extensions / Java

Additional notes

• https://www.cs.utexas.edu/∼tdillig/cs345H/lecture18-6up.pdf

3.1 Java

• Java: COOL on steroids

• History of Java

– Began as Oak at SUN

∗ original target set-top devices

∗ Initial development took several years (’91–’94)

– Retargeted as the Internet language (’94–95)

∗ Every new language needs a “killer app”

∗ Alernatives such as TCL, Python

• Things that Cool does not have (and we will talk about how to extend Cool to add these features)

– Arrays

– Exceptions

– Interfaces

– Coercions

– Dynamic Loading & Initialization

– Threads

– Summary

• Designs are based on

– Modula-3 for types

– Eiffel, ObjectiveC, C++ for Object orientation, interfaces

– Lisp for Java’s dynamic flavor (reflection)

• Java is a BIG language

– Lots of features

– Lots of feature interactions

21

https://www.cs.utexas.edu/~tdillig/cs345H/lecture18-6up.pdf

3.2 (Java) Arrays

• Assume B < A. The following Java code

B[] b = new B[10];

A[] a = b;

a[0] = new A();

b[0].aMethodNotDeclaredInA();

– pass the type checker

– but gives runtime type error

– Thus, java type system is unsound

– Having multiple aliases to updateable locations with different types is unsound!

• Standard solution

– Disallow subtyping through arrays

B < A if B inherits from A

C < A if C < B and B < A

B[] < A[] if B = A

• Java fixes the problem by checking each array assignment at runtime for type correctness

– Is the type of the object being assigned compatible with the type of the array?

– Cons: Adds overhead on array computations

– Pros: But note that arrays of primitive types, which are more widely-used, are unaffected (because
Primitive types are not classes)

3.3 Java Exceptions

• Deep in a section of code, you encounter an unexpected error

– Out of memory

– A list that is supposed to be sorted is not, etc.

• Add a new type (class) of exceptions

• Add new forms try something catch(x) cleanup throw exception

22

	Optimizations
	Intermediate Representation (IR)
	Three-Address IR

	Optimization Overview
	3-address code
	Basic Block
	Control-Flow Graph
	3 granularity levels of optimizations

	Local Optimization: (optimization applied to basic block)
	Algebraic Simplifications
	Constant Folding
	Unreachable Examples
	Single Assignment form
	Optimizations on SA blocks

	Global Optimization
	Dataflow Analysis

	Constant Propagation
	Algorithm
	Orderings
	Loops

	Liveness Analysis
	Definition
	Algorithm
	Summary

	Memory Management / Garbage Collection
	Mark and Sweep
	Stop and Copy
	Reference Count

	Cool Extensions / Java
	Java
	(Java) Arrays
	Java Exceptions

