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Ariane-5 rocket
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– Mozilla Developer

“Everyday, almost 300 bugs
appear [..] far too many for

only the Mozilla programmers
to handle.”

Software bugs annually cost
0.6% of the U.S GDP and
$312 billion to the global

economy

Average time to fix a
security-critical error:

28 days
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Automated program analysis techniques and tools can decrease
debugging time by an average of 26% and $41 billion annually

Program Verification

Check if a program meets a given
specification

Program Repair

Fix a buggy program to satisfy a
given specification
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Invariant Generation

def intdiv(x, y):
q = 0
r = x
while r ≥ y:
a = 1
b = y
while [??] r ≥ 2b:
a = 2a
b = 2b

r = r - b
q = q + a
[??]
return q

Discover invariant properties
at certain program locations

Answer the question “what
does this program do ?”

Automatic Program Repair

def intdiv(x, y):
q = 0
r = x

while r ��7
̸=

≥ y:
a = 1

b = ���
3∗y

y
while r ≥ 2b:
a = 2a
b = 2b

r = r - b

q = q ��*
−2∗a

+a

return q

Localize errors and modify
code to fix bugs

A form of program synthesis
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Core Research Areas

Invariant Discovery Program Repair
Configurable System

New Research Directions

Unix Build Systems IoT systems AI-generated Software
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Outline

SE/PL Research
Invariant Generation
Automatic Program Repair
Highly-Configurable Systems

Current/New Research Works
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How We Analyze Programs

– Software Testing course

“GCC: 9000 assertions,
LLVM: 13,000 assertions [..]

1 assertion per 110 loc”
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“program invariants are asserted properties, such as relations
among variables, at certain locations in a program”

assert(x == 2*y);
assert(0 <= idx < |arr|);

int getDateOfMonth(int m){
/*pre: 1 <= m <= 12*/
...
/*post: 0 <= result <= 31*/

}

“a loop invariant is a condition that is true on entry
into a loop and is guaranteed to remain true on every
iteration of the loop [..]”
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Uses
Understand and verify programs

Formal proofs

Debug (locate errors)

Documentations
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Approaches to Finding Invariants

int intdiv(int x, int y){
int q=0; int r=x;
while(r ≥ y){
int a=1; int b=y;
while[L](r ≥ 2*b){
a = 2*a; b = 2*b;

}
r=r-b; q=q+a;

}
return q;

}

Static Analysis

Analyze source code directly

Pros: guaranteed results

Cons: computationally intensive, infer
simple invariants

x y q r

0 1 0 0
1 1 1 0
3 4 0 3
8 1 8 0
15 5 3 0
20 2 10 0
100 1 100 0

...
...

Dynamic Analysis

Analyze program traces

Pros: fast, source code not required

Cons: results depend on traces, might
not hold for all runs
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Example

int intdiv(int x, int y){
assert(x>0 && y>0);
int q=0; int r=x;
while(r ≥ y){
int a=1;
int b=y;
while[L](r ≥ 2*b){
a = 2*a;
b = 2*b;

}
r=r-b;
q=q+a;

}
return q;

}

x y a b q r

15 2 1 2 0 15
15 2 2 4 0 15
15 2 1 2 4 7

4 1 1 1 0 4
4 1 2 2 0 4

Invariants at L: b = ya, x = qy + r , r ≥ 2ya

12



Example

int intdiv(int x, int y){
assert(x>0 && y>0);
int q=0; int r=x;
while(r ≥ y){
int a=1;
int b=y;
while[L](r ≥ 2*b){
a = 2*a;
b = 2*b;

}
r=r-b;
q=q+a;

}
return q;

}

x y a b q r

15 2 1 2 0 15
15 2 2 4 0 15
15 2 1 2 4 7

4 1 1 1 0 4
4 1 2 2 0 4

Invariants at L: b = ya, x = qy + r , r ≥ 2ya

12



DIG discovers polynomial relations of the forms

Equalities c0 + c1x1 + c2xn + c3x1x2 + · · ·+ cmx
d1
1 . . . xdn

n = 0

Inequalities c0 + c1x1 + c2xn + c3x1x2 + · · ·+ cmx
d1
1 . . . xdn

n ≥ 0, ci ∈ R

Examples

cubic z − 6n = 6, 1
12z

2 − y − 1
2z = −1

extended gcd gcd(a, b) = ia+ jb

sqrt x + ε ≥ y2 ≥ x − ε

Method
Equalities: solve equations

Inequalities: construct polyhedra
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Finding Nonlinear Equations using Linear Equation Solving

Terms and degrees

V = {r , y , a}; deg = 2

↓
T = {1, r , y , a, ry , ra, ya, r2, y2, a2}

Nonlinear equation template

c1+c2r+c3y+c4a+c5ry+c6ra+c7ya+c8r
2+c9y

2+c10a
2 = 0

System of linear equations

trace 1 : {r = 15, y = 2, a = 1}
eq 1 : c1 + 15c2 + 2c3 + c4 + 30c5 + 15c6 + 2c7 + 225c8 + 4c9 + c10 = 0

...
Solve for coefficients ci

V = {x , y , a, b, q, r}; deg = 2 −→ b = ya, x = qy+r

x y a b q r

15 2 1 2 0 15
15 2 2 4 0 15
15 2 1 2 4 7

4 1 1 1 0 4
4 1 2 2 0 4
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Geometric Invariant Inference

x y

-2 1
-1 -1
1 -3
2 0
3 -2
5 2

program traces

trace points

in 2D

polygon

c1x + c2y ≥ c

octagon

±x ± y ≥ c

zone

x − y ≥ c

box

±x , y ≥ c

16



Geometric Invariant Inference

x y

-2 1
-1 -1
1 -3
2 0
3 -2
5 2

program traces

trace points

in 2D

polygon

c1x + c2y ≥ c

octagon

±x ± y ≥ c

zone

x − y ≥ c

box

±x , y ≥ c

16



Iterative Invariant Generation

Dynamic
Inference

Static
Checking

Candidate Invariants

Counterexamples

Dynamic Analysis: learn candidate invariants from execution traces

Static Analysis: use theorem proving and constraint solving to check
invariants against program code and return counterexample inputs
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Complexity Analysis

void triple(int M, int N, int P){
assert (0 <= M);
assert (0 <= N);
assert (0 <= P);
int i = 0, j = 0, k = 0;
int t = 0;
while(i < N){
j = 0; t++;
while(j < M){
j++; k = i; t++;
while (k < P){
k++; t++;

}
i = k;

}
i++;

}
[L]

}

Complexity of this program?

Use t to count loop iterations

At first glance: t = O(MNP)

DIg found an interesting (and
unexpected) nonlinear invariant at L:
P2Mt + PM2t − PMNt −M2Nt−
PMt2 +MNt2 + PMt − PNt − 2MNt+
Pt2 +Mt2 + Nt2 − t3 − Nt + t2 = 0

Solve for t yields the most precise,
unpublished bound:
t = 0 when N = 0,
t = P +M + 1 when N ≤ P,
t = N −M(P − N) when N > P

18



Complexity Analysis

void triple(int M, int N, int P){
assert (0 <= M);
assert (0 <= N);
assert (0 <= P);
int i = 0, j = 0, k = 0;
int t = 0;
while(i < N){
j = 0; t++;
while(j < M){
j++; k = i; t++;
while (k < P){
k++; t++;

}
i = k;

}
i++;

}
[L]

}

Complexity of this program?

Use t to count loop iterations

At first glance: t = O(MNP)

DIg found an interesting (and
unexpected) nonlinear invariant at L:
P2Mt + PM2t − PMNt −M2Nt−
PMt2 +MNt2 + PMt − PNt − 2MNt+
Pt2 +Mt2 + Nt2 − t3 − Nt + t2 = 0

Solve for t yields the most precise,
unpublished bound:
t = 0 when N = 0,
t = P +M + 1 when N ≤ P,
t = N −M(P − N) when N > P

18



Complexity Analysis

void triple(int M, int N, int P){
assert (0 <= M);
assert (0 <= N);
assert (0 <= P);
int i = 0, j = 0, k = 0;
int t = 0;
while(i < N){
j = 0; t++;
while(j < M){
j++; k = i; t++;
while (k < P){
k++; t++;

}
i = k;

}
i++;

}
[L]

}

Complexity of this program?

Use t to count loop iterations

At first glance: t = O(MNP)

DIg found an interesting (and
unexpected) nonlinear invariant at L:
P2Mt + PM2t − PMNt −M2Nt−
PMt2 +MNt2 + PMt − PNt − 2MNt+
Pt2 +Mt2 + Nt2 − t3 − Nt + t2 = 0

Solve for t yields the most precise,
unpublished bound:
t = 0 when N = 0,
t = P +M + 1 when N ≤ P,
t = N −M(P − N) when N > P

18



Complexity Analysis

void triple(int M, int N, int P){
assert (0 <= M);
assert (0 <= N);
assert (0 <= P);
int i = 0, j = 0, k = 0;
int t = 0;
while(i < N){
j = 0; t++;
while(j < M){
j++; k = i; t++;
while (k < P){
k++; t++;

}
i = k;

}
i++;

}
[L]

}

Complexity of this program?

Use t to count loop iterations

At first glance: t = O(MNP)

DIg found an interesting (and
unexpected) nonlinear invariant at L:
P2Mt + PM2t − PMNt −M2Nt−
PMt2 +MNt2 + PMt − PNt − 2MNt+
Pt2 +Mt2 + Nt2 − t3 − Nt + t2 = 0

Solve for t yields the most precise,
unpublished bound:
t = 0 when N = 0,
t = P +M + 1 when N ≤ P,
t = N −M(P − N) when N > P

18



Applications

Security

complexity and side-channel attacks (FSE’17, ASE’17, SEAD
Workshop ’20)

AES analysis (ICSE’12, TOSEM’13)

Others

termination/liveness (OOPSLA’20)

heap/pointer (PLDI’19)

program (API) synthesis (OOPSLA’19)

disjunctive/geometric invs (ICSE’14, J. Automated Reasoning’13)

Highly-Configurable Systems: iGen (FSE ’16), GenTree (ICSE ’21)
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Current/New Research Works
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Zune Bug

Wed morning, Dec 31, 2008: Microsoft Zune
music players mysteriously froze

– Matt Akers (Microsoft Zune spokesman)

“By [Thursday] you should allow the battery to
fully run out of power before the unit can restart

successfully, then simply ensure that your device is
recharged, then turn it back on”
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Zune Bug

int zunebug(int days) {
int year = 1980;
while (days > 365) {
if (isLeapYear(year)){
if (days > 366) {
days -= 366;
year += 1;

}
}
else {
days -= 365;
year += 1;

}
}
return year;

}

int zunebug_repair(int days) {
int year = 1980;
while (days > 365) {
if (isLeapYear(year)){
if (days > 366) {
// days -= 366; // repair deletes
year += 1;

}
days -= 366; // repair inserts

} else {
days -= 365;
year += 1;

}
}
return year;

}
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GenProg: Program Repair using Genetic Algorithm

1 Isolate faults

2 Mutate program statements
and reuse existing code

3 Check repair candidates

Results

demonstrated on bugs in real-world software (repair 16 programs
over 1.25 MLocs, 2 mins avg)

10-year Most Influential Paper award (ICSE ’19) and 10-year Most
Impact Paper award (GECCO ’19)
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APR Techniques

Evolutionary computing (ICSE’09, GECCO’09, ICST’09, CACM’10,
TSE’13)

Theory and Formal Analysis: equivalence between program repair
and reachability, apply input generation techniques to repair
programs (TACAS’17)

Non-traditional Repairs

Corrupted data structures (Google Summer of Code’18, FSE JPF
Workshop’18)

Fault localization in declarative models (ICSE ’21)

Repair declarative programs (ICSE ’21)
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Analyzing Configurable Software

Modern software are highly-configurable

Allowing for customization and flexiblity

But can have misconfigurations (rank 6th on 2020 OWASP list of
most critical security risks)

# a. ~/.htaccess
<Limit
PUT DELLETE TRACE
..

</Limit>

# b. /etc/apache/httpd.conf
RewriteCond TRACE
..

# c. load mod_rewrite
a2enmod mod_rewrite

# d. /etc/apache/httpd.conf
LoadModule rewrite_module
"mod_rewrite.so"

...
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Program with 7 options: s, t, u, v , x , y , z ∈ {0 . . . 4}

Interactions discovery

interaction behavior

x ∧ y B0
x ∧ y ∧ (z ∈ {0, 3, 4}) B1
s ∨ t B2
(¬s ∧ ¬t) ∨ (¬u ∨ ¬v) B3
...

Use dynamic analysis

config s t u v x y z behavior

c1 1 0 1 1 1 1 4 B0, B1
c2 0 0 1 1 1 1 0 B0, B3
c3 0 1 1 1 1 0 3 B2

.

.

.

27
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GenTree: Dynamic Interaction Discovery (FSE’16, ICSE’21)
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IoT Interaction Analysis and Repair (UNL Faculty grant’21)
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Using a prototype implementation of I��C��, we evaluated
its performance in detecting prominent classes of IoT coordina-
tion threats among thousands of publicly-available real-world IoT
apps developed using diverse technologies. Our results corroborate
I��C��’s ability to e�ectively detect complex coordinations among
apps communicating via both cyber and physical means, many of
which were previously unreported. We also demonstrate I��C��’s
signi�cantly improved scalability when compared to existing IoT
threat detection techniques.

We further compare the precision of I��C�� to the other ap-
proaches using a set of benchmark IoT apps, developed by the other
research groups [12, 18]. I��C�� is up to 68.8% more successful
in detecting safety violations. Additionally, compared to the state-
of-the art techniques in detecting safety and security violations
in IoT environments, I��C�� reduces the violation detection time
by 92.1% on average and by as much as 99.5%. To summarize, this
paper makes the following contributions:

• Classi�cation of interaction threats between IoT apps. We iden-
tify and rigorously de�ne seven classes of multi-app inter-
action threats between IoT apps over physical and cyber
channels both within and among apps.

• Formal model of IoT systems. We develop a formal speci�ca-
tion of IoT systems, respecting cyber and physical channels
and representing the behavior of IoT apps apropos the de-
tection of safety and security vulnerabilities. We construct
this speci�cation as a reusable Alloy [1] module to which all
extracted app models conform.

• Automated analysis. We show how to exploit the power of our
formal abstractions by building a modular model extractor
that uses static analysis techniques to automatically extract
the precise behavior of IoT apps into a trimmed behavioral
rule graph, respecting the logical conditions that impact the
behavior of the app rules, which is then captured in a format
amenable to formal analysis.

• Experiments. We evaluate the performance of I��C�� against
real-world apps developed for multiple IoT platforms (Smart-
Things and IFTTT), corroborating I��C��’s ability in e�ec-
tive compositional analysis of IoT apps interaction vulnera-
bilities in the order of minutes. We make research artifacts, in-
cluding the entire Alloy speci�cations, and the experimental
data available to the research and education community [26].

2 BACKGROUND AND MOTIVATION
Smart home IoT platforms are cyber-physical systems comprising
both virtual elements, such as software, and physical devices, like
sensors or actuators. In popular smart home platforms, such as
SmartThings [39], physical devices installed in the home are reg-
istered with virtual proxies in a cloud-based backend. Each proxy
tracks the state of the device via one or more attributes, which
can assume di�erent values. The backend also allows the user to
install software apps, which automate activities of these devices by
applying custom rules that act on the virtual proxies. These rules
adopt a trigger-condition-action paradigm:
Triggers: Cyber or physical events reported to the smart home sys-

tem by the devices, such as a motion sensor being activated,
trigger the rules.

Conditions: Logical predicates de�ned on the current state of the
devices determine if the rule should execute. For example, a
rule might only execute if the system is in “home” mode.

Actions: If the conditions are met, the rule changes the state of
one or more devices, which could result in a physical change
like activating a switch.

The safety and security of these systems is a major concern [9, 29,
36], particularly regarding software apps. Users can install multiple,
arbitrary apps which can interact not only with physical devices in
the smart home, but also with each other. Multi-app coordination
threats among smart home apps arise when two or more app rules
interact to produce a surprising, unintended, or even dangerous result
in the physical environment of the smart home. Apps can interact
over cyber channels such as shared device proxies, global settings,
or scheduled tasks. We refer to coordination over cyber channels as
direct coordination. They also interact over physical channels [18]
via a shared metric acted upon by an actuator and monitored by a
sensor ; this is termed indirect coordination.

To make the idea concrete, consider three publicly-available apps,
i.e., the SmartThings app MultiSwitch and the IFTTT automations
If It’s Bright Turn O� the Light and Living Room Lamp On. Figure 1
shows an example con�guration of these apps along with their
devices, which can enter into an in�nite loop. If It’s Bright watches
a light sensor. When the light reaches a user-de�ned level, it turns
o� the MultiSwitch. MultiSwitch forwards that command to both
the overhead light and the lamp. Living Room Lamp On responds
to the overhead light going o� by turning on the lamp. That, in
turn, activates the light sensor through a physical channel, which
initiates the same chain of events again.

Figure 1: Example in�nite actuation loop. The apps turn the
living room lights on and o� again repeatedly due to a mis-
con�guration.

The above example points to one of the most demanding issues
in the smart home IoT ecosystem, i.e., detection of multi-app coor-
dination threats. What is required is a system-wide reasoning—that
determines how those individual rules could impact one another
when the corresponding apps are installed together—not comfort-
ably attainable through conventional analysis methods such as
static analysis or testing, which are more suited for identifying is-
sues in individual parts of the system. In the next sections, we �rst
provide a classi�cation of various multi-app coordination threats,
and then present a formal modeling approach to address these
issues.

3 MULTI-APP COORDINATION THREATS
In this section, we present seven classes of potential multi-app coor-
dination threats that can arise due to interactions between IoT app
rules. As de�ned earlier, a rule comprises a set of triggers, conditions,

2
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Build Systems (SPLC Workshop’20, ICSME NIER’20, NSF CRII’20)

Linux/Unix Build Systems

ifeq ($(abs_otree),$(CURDIR))
MAKEFLAGS += --no-print-dir
else
need-sub-make := 1
endif

abs_stree := $(rpath $(dir $
(this-makefile)))

ifneq ($(words $(subst :,
,$(abs_stree))), 1)

$(error src dir cannot contain
spaces or colons)

endif
ifneq ($(abs_stree),$(abs_otree))
MAKEFLAGS +=

--include-dir=$(abs_stree)

Make/CMake
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Build Systems (SPLC Workshop’20, ICSME NIER’20, NSF CRII’20)

Linux/Unix Build Systems

ifeq ($(abs_otree),$(CURDIR))
MAKEFLAGS += --no-print-dir
else
need-sub-make := 1
endif

abs_stree := $(rpath $(dir $
(this-makefile)))

ifneq ($(words $(subst :,
,$(abs_stree))), 1)

$(error src dir cannot contain
spaces or colons)

endif
ifneq ($(abs_stree),$(abs_otree))
MAKEFLAGS +=

--include-dir=$(abs_stree)

Make/CMake
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Deep Neural Networks

Invariants (activation patterns) discovery

Symbolic testing
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IDE Integration (https://grammatech.gitlab.io/Mnemosyne/docs/muses/)

IDE

Invariant
Generation

Checker

IR

Invariants

Input Tests

guide

&
explore

Traces

Coverage

Code Instru-
mentation

Program
Repair

Invariants
&

Tests

Edits

Fixes

33

https://grammatech.gitlab.io/Mnemosyne/docs/muses/


Thank you!
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