Improving the Reliability and Safety of Systems

Toward Scalable Deep Neural Network Verification

ThanhVu (Vu) Nguyen

SWE 619, Mar 20, 2024

Outline

Al Safety Verification

DNN EVERYWHERE

DNN Problems

4

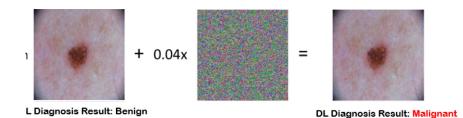
Black person with hand-held thermometer = firearm. Asian person with hand-held thermometer = electronic device.

Computer vision is so utterly broken it should probably be started over from scratch.

Gun	88%
Photography	68%
Firearm	65%
Plant	59%

Technology	68%
Electronic Device	66%
Photography	62%
Mobile Phone	54%

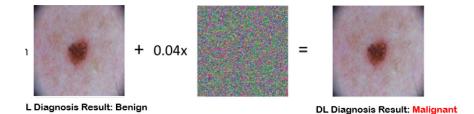
Robustness Properties



$$\forall i \in \{0 \dots |X| - 1\}. \ X_i - Y_i \le 0.1 \ \Rightarrow \ class(X) \equiv class(Y) \qquad (1)$$

7

Robustness Properties



$$\forall i \in \{0 \dots |X| - 1\}. \ X_i - Y_i \le 0.1 \ \Rightarrow \ class(X) \equiv class(Y) \qquad (1)$$

if corresponding pixels of two images X and Y are not different by more than 0.1, then X and Y should have the same classification

7

Safety Properties

Safety Properties

ACAS: air traffic collision system, detects intruder and decides action.

$$d_{intru} \geq 55947 \land v_{own} \geq 1145 \land v_{intru} \leq 60 \implies r_{nothing} \leq \tau$$

if intruder is distant and significantly slower than us, then we do nothing (i.e., below a certain threshold)

8

DL Classification: Green Light

Changing one pixel here Text

DL Classification: Red Light

- Well-trained, e.g., 97% accuracy, DNNs are fine for most tasks
 - But not enough for mission-critical tasks, e.g., self-driving cars, air traffic collision control
- Testing can find counterexamples (e.g., adversarial attacks)
 - Testing shows the existence of errors, not its absence (Dijkstra)

DL Classification: Green Light

Changing one pixel here Text

DL Classification: Red Light

- Well-trained, e.g., 97% accuracy, DNNs are fine for most tasks
 - But not enough for mission-critical tasks, e.g., self-driving cars, air traffic collision control
- Testing can find counterexamples (e.g., adversarial attacks)
 - Testing shows the existence of errors, not its absence (Dijkstra)

Formal Verification Can Help!

Software Verification

- Provide formal guarantee that a system really has no specific type of errors
- Mature field in CS/Logics with lots of powerful techniques and tools
 - Automated Theorem Proving
 - Constraint Solving (e.g., SAT/SMT solving)
 - Model Checking
 - Abstract Interpretation, ...
- Employed in mission-critical systems, e.g., avionics, medical devices, Windows, Clouds system (AWS)

The problem of Deep Neural Network verification

Question: Given a network N and a property p, does N have p?

• p often has the form $P \Rightarrow Q$ (precondition P, postcondition Q)

Answer: Yes / No

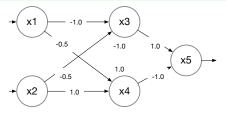
The problem of Deep Neural Network verification

Question: Given a network N and a property p, does N have p?

• p often has the form $P \Rightarrow Q$ (precondition P, postcondition Q)

Answer: Yes / No

Simple DNN with ReLU



• E.g., $x_3 = \max(-1x_1 + -0.5x_2, 0)$

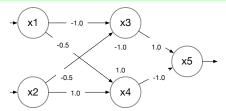
The problem of Deep Neural Network verification

Question: Given a network N and a property p, does N have p?

• p often has the form $P \Rightarrow Q$ (precondition P, postcondition Q)

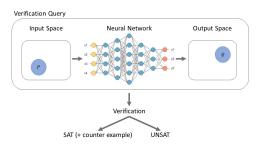
Answer: Yes / No

Simple DNN with ReLU

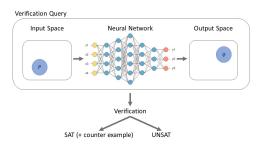


- E.g., $x_3 = \max(-1x_1 + -0.5x_2, 0)$
- Valid: $x_1 \in [-1, 1] \land x_2 \in [-2, 2] \Rightarrow x_5 \le 0$
- Invalid: $x_1 \in [-1, 1] \land x_2 \in [-2, 2] \Rightarrow x_5 > 0$

Constraint Solving Techniques

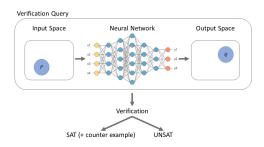


Constraint Solving Techniques



- Transform DNN verification into a constraint (satisfiability) problem
 - UNSAT: *p* is a property of *N*
 - SAT: p is not a property of N (also provide counterexamples)
 - **■** TIMEOUT

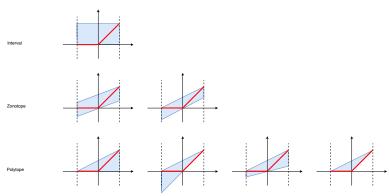
Constraint Solving Techniques



- Transform DNN verification into a constraint (satisfiability) problem
 - UNSAT: *p* is a property of *N*
 - SAT: p is not a property of N (also provide counterexamples)
 - **■** TIMEOUT
- Solve the constraint, e.g., using MILP solvers
- Scalability is a Huge problem (many TIMEOUTs)
 - Complexity $O(2^N)$, where N is the number of neurons

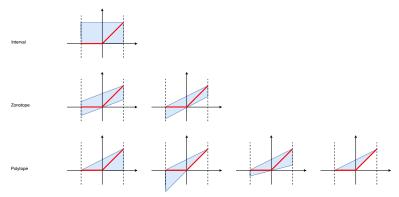
Abstraction Techniques

- Overapproximate computation (e.g., ReLU) using abstract domains
 - interval, zonotopes, polytopes



Abstraction Techniques

- Overapproximate computation (e.g., ReLU) using abstract domains
 - interval, zonotopes, polytopes

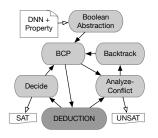


- Scale well, but loose precision (producing spurious cex's)
 - Claiming a property is violated when it is not

NeuralSAT: Our DNN Constraint Solver

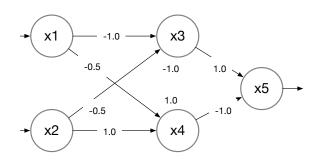
To prove $N \Rightarrow (P \Rightarrow Q)$

- Call NeuralSAT($N \wedge P \wedge \neg Q$)
- Return UNSAT or SAT (and counterexample)



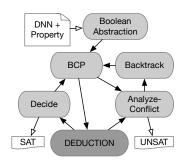
- Abstract as a boolean satisfiability problem
- 2 Iteratively search for satisfying assignment
 - Use heuristics to make decision
 - Use propagation to communicate learn information
 - Analyze conflicts, learn conflict information, and backtrack
 - Use a theory solver to quickly deduce unsatisfiability (UNSAT)

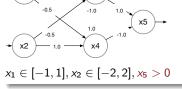
Example: Simple DNN with ReLU activation



To prove $f: x_1 \in [-1, 1] \land x_2 \in [-2, 2] \Rightarrow x_5 \le 0$:

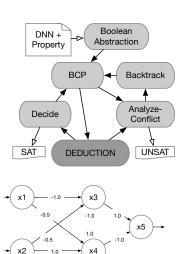
- Use NeuralSAT to check if $\neg f$ is satisfiable
- NeuralSAT($N \land x_1 \in [-1,1] \land x_2 \in [-2,2] \land x_5 > 0$)
- NeuralSAT returns UNSAT, indicating f is valid





Boolean Abstraction

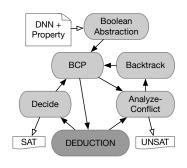
- Create 2 boolean variables v_3 and v_4 to represent activation status of x_3, x_4
 - $v_3 = T$ means x_3 is active, - $x_1 - 0.5x_2 - 1 > 0$

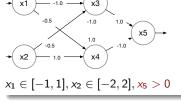


 $x_1 \in [-1,1], x_2 \in [-2,2], x_5 > 0$

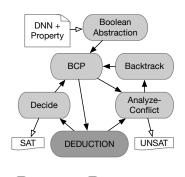
Boolean Abstraction

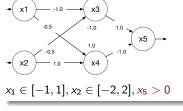
- Create 2 boolean variables v_3 and v_4 to represent activation status of x_3, x_4
 - $v_3 = T$ means x_3 is active, - $x_1 - 0.5x_2 - 1 > 0$
- Form two clauses $\{v_3 \lor \overline{v_3} ; v_4 \lor \overline{v_4}\}$
- Find boolean values for v_3 , v_4 that satisfies the clauses and their implications



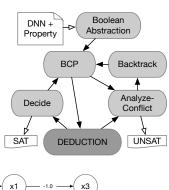


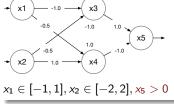
• Use **abstraction** to approximate upperbound $x_5 \le 0.55$ (from $x_1 \in [-1, 1], x_2 \in [-2, 2]$)



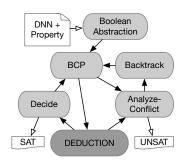


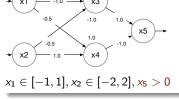
- Use **abstraction** to approximate upperbound $x_5 \le 0.55$ (from $x_1 \in [-1, 1], x_2 \in [-2, 2]$)
- **Deduce** $x_5 > 0$ *might be* feasible



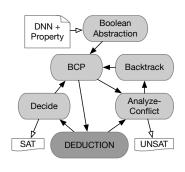


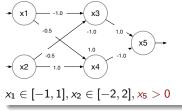
- Use **abstraction** to approximate upperbound $x_5 \le 0.55$ (from $x_1 \in [-1, 1], x_2 \in [-2, 2]$)
- **Deduce** $x_5 > 0$ *might be* feasible
- **Decide** $v_3 = F$ (randomly)
 - lacksquare new constraint $-x_1-0.5x_2-1<0$



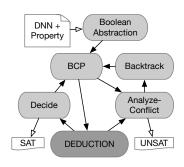


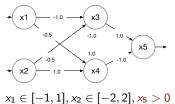
- Approximate upperbound $x_5 \le 0$ (due to additional constraint from $v_3 = F$)
- **Deduce** $x_5 > 0$ infeasible: **CONFLICT**



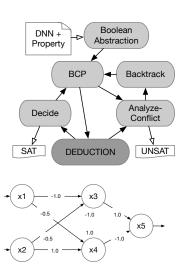


- Approximate upperbound $x_5 \le 0$ (due to additional constraint from $v_3 = F$)
- **Deduce** $x_5 > 0$ infeasible: **CONFLICT**
- Analyze conflict, backtrack and erase prev. decision v₃ = F
- Learn new clause v₃
 - v_3 will have to be T in next iteration



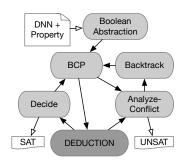


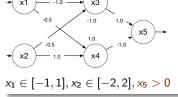
- **Decide** $v_3 = T$ (**BCP**, due to learned clause v_3)
 - lacksquare new constraint $-x_1-0.5x_2-1>0$



 $x_1 \in [-1,1], x_2 \in [-2,2], x_5 > 0$

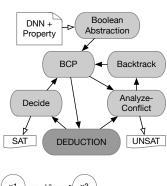
- **Decide** $v_3 = T$ (**BCP**, due to learned clause v_3)
 - new constraint $-x_1 0.5x_2 1 > 0$
- Approximate new upperbound for x_5 (using additional constraint from $v_3 = T$)
- **Deduce** $x_5 > 0$ might be feasible
- **Decide** $v_4 = T$ (randomly)
- :

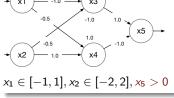




After several iterations

- Learn clauses $\{v_3, \overline{v_3} \lor v_4, \overline{v_3} \lor \overline{v_4}\}$
 - **Deduce** not possible to satisfy the clauses





After several iterations

- **Learn** clauses $\{v_3, \overline{v_3} \lor v_4, \overline{v_3} \lor \overline{v_4}\}$
- Deduce not possible to satisfy the clauses
- Return UNSAT
 - Cannot find inputs satisfying $x_1 \in [-1,1], x_2 \in [-2,2]$ that cause N to return $x_5 > 0$
 - Hence, $x_5 \le 0$ holds (i.e., the original property is valid)

	1	NeuralSAT	1437	100.0%	139	47
ACAS Xu (13K)	1	nnenum	1437	100.0%	139	47
	3	$\alpha\beta$ -CROWN	1436	99.9%	139	46
	4	Marabou	1426	99.2%	138	46
	5	MN-BaB	1097	76.3%	105	47
MNISTFC (532K)	1	$\alpha\beta$ -CROWN	582	100.0%	56	22
	2	NeuralSAT	573	98.5%	55	23
	3	nnenum	403	69.2%	39	13
	4	MN-BaB	370	63.6%	36	10
	4	Marabou	370	63.6%	35	20
CIFAR2020 (2.5M)	1	NeuralSAT	1533	100.0%	149	43
	2	$\alpha\beta$ -CROWN	1522	99.3%	148	42
	3	MN-BaB	1486	96.9%	145	36
	5	nnenum	518	33.8%	50	18
RESNET_AB (354K)	1	NeuralSAT	513	100.0%	23	23
	1	$\alpha\beta$ -CROWN	513	100.0%	49	23
	3	MN-BaB	363	70.8%	34	23
MNIST_GDVB (3M)	1	NeuralSAT	480	100.0%	48	0
	2	$\alpha\beta$ -CROWN	400	83.3%	40	0
	3	MN-BaB	200	41.7%	20	0
	1	NeuralSAT	4536	100.0%	440	136
	2	$\alpha\beta$ -CROWN	4453	98.2%	432	133
Overall	3	MN-BaB	3516	77.5%	340	116
Overall	4	nnenum	2358	52.0%	228	78

Benchmark

Rank Verifier Score Percent Verify Falsify

Key Ideas

- Formalization of DNN verification
- Analyze, learn, and propagate information (significantly reduce search space)
- Dedicated DNN-specific theory solver (enable fast proving)
- New approach; open doors to new research on heuristics, optimizations specific to DNNs

Key Ideas

- Formalization of DNN verification
- Analyze, learn, and propagate information (significantly reduce search space)
- Dedicated DNN-specific theory solver (enable fast proving)
- New approach; open doors to new research on heuristics, optimizations specific to DNNs

Usability Features

- Standard: inputs (ONNX) and outputs (SAT/UNSAT/TIMEOUT)
- Versatile
 - Support Feedforward, Convolutional, Residual Networks
 - Support ReLU, Sigmoid, Tanh, Power, etc
- Scale well to large networks with millions of neurons
- Active development & frequent Updates
- Fully automatic (require little configurations from users)