Improving the Reliability and Safety of Systems

Toward Scalable Deep Neural Network Verification

ThanhVu (Vu) Nguyen

SWE 619, Mar 20, 2024

Outline

Al Safety Verification

DNN Problems

Nicolas Kayser-Bril
@nicolaskb
Black person with hand-held thermometer = firearm.

Asian person with hand-held thermometer = electronic
device.

Computer vision is so utterly broken it should probably o
be started over from scratch. S AT

Screenshot from 2020-03-31 11.27-22 png

GOOGLE SELF-DRIVING C ETS INTO
AN ACCIDENT INVOLVING INJURIES

GOOGLE SELF DRIVING CAR
CRASHES INTO A BUS

T ——a

| TEMPE | ql R | 7
| M ERLESS UBER CAR INVOLVED IN CRASH IN TEMPE
f‘ '| DEADLY CRASH WITH SELF-DRIVING UBER A e A
g—

Robustness Properties

+ 0.04x

L Diagnosis Result: Benign DL Diagnosis Result: Malignant

Vie{0...|X]=1}. X; —Y; <0.1 = class(X) = class(Y) (1)

Robustness Properties

+ 0.04x

L Diagnosis Result: Benign DL Diagnosis Result: Malignant

Vie{0...|X]=1}. X; —Y; <0.1 = class(X) = class(Y) (1)

if corresponding pixels of two images X and Y are not different by more
than 0.1, then X and Y should have the same classification

Safety Properties

ACAS X: Whols

Safety Properties

ACAS X: Whole Airspace Protection A
%

ACAS: air traffic collision system, detects intruder and decides action.
dintru = 55947 A Vown > 1145 A Vipgry < 60 = nothing < T

if intruder is distant and significantly slower than us, then we do nothing
(i.e., below a certain threshold)

Changing one
pixel here
Text

DL Classification: Green Light DL Classification: Red Liaht

@ Well-trained, e.g., 97% accuracy, DNNs are fine for most tasks

m But not enough for mission-critical tasks, e.g., self-driving cars, air traffic
collision control

@ Testing can find counterexamples (e.g., adversarial attacks)

m Testing shows the existence of errors, not its absence (Dijkstra)

Changing one
pixel here
Text

DL Classification: Green Light DL Classification: Red Liaht

@ Well-trained, e.g., 97% accuracy, DNNs are fine for most tasks

m But not enough for mission-critical tasks, e.g., self-driving cars, air traffic
collision control

@ Testing can find counterexamples (e.g., adversarial attacks)

m Testing shows the existence of errors, not its absence (Dijkstra)

Formal Verification Can Help!

Software Verification

@ Provide formal guarantee that a system really has no specific type of errors
@ Mature field in CS/Logics with lots of powerful techniques and tools

Automated Theorem Proving

Constraint Solving (e.g., SAT /SMT solving)
Model Checking

Abstract Interpretation, ...

@ Employed in mission-critical systems, e.g., avionics, medical devices,
Windows, Clouds system (AWS)

10

The problem of Deep Neural Network verification

Question: Given a network N and a property p, does N have p?

@ p often has the form P = Q (precondition P, postcondition Q)
Answer: Yes / No

11

The problem of Deep Neural Network verification

Question: Given a network N and a property p, does N have p?

@ p often has the form P = Q (precondition P, postcondition Q)
Answer: Yes / No

Simple DNN with RelLU

@ E.g., x3 = max(—1x; + —0.5x2,0)

11

The problem of Deep Neural Network verification

Question: Given a network N and a property p, does N have p?

@ p often has the form P = Q (precondition P, postcondition Q)
Answer: Yes / No

Simple DNN with RelLU

@ E.g., x3 = max(—1x; + —0.5x2,0)
@ Valid: x; € [-1,1]Ax €[-2,2] = x5 <0

@ Invalid: x; € [-1,1]Ax € [-2,2] = x5 >0

11

Constraint Solving Techniques

Verification Query

e
{ Input Space Neural Network

Output Space

Verification

SAT (+ counter example) UNSAT

12

Constraint Solving Techniques

Verification Query

{ Input Space Neural Network Output Space

Verification

SAT (+ counter example) UNSAT

@ Transform DNN verification into a constraint (satisfiability) problem

m UNSAT: p is a property of N

m SAT: pis not a property of N (also provide counterexamples)

m TIMEOUT

12

Constraint Solving Techniques

Verification Query

{ Input Space Neural Network Output Space

Verification

SAT (+ counter example) UNSAT

@ Transform DNN verification into a constraint (satisfiability) problem

m UNSAT: p is a property of N
m SAT: pis not a property of N (also provide counterexamples)

m TIMEOUT
@ Solve the constraint, e.g., using MILP solvers
@ Scalability is a Huge problem (many TIMEOUTS)

m Complexity O(2"), where N is the number of neurons

12

Abstraction Techniques

@ Overapproximate computation (e.g., ReLU) using abstract domains

m interval, zonotopes, polytopes

i

Polytope L | i | L —

13

Abstraction Techniques

@ Overapproximate computation (e.g., ReLU) using abstract domains

m interval, zonotopes, polytopes

.7

Zonotope I

.y

Polytope D D ! D
' ' ' L

@ Scale well, but loose precision (producing spurious cex's)

m Claiming a property is violated when it is not

13

NeuralSAT: Our DNN Constraint Solver

To prove N = (P = Q)
@ Call NeuralSAT(N A P A=Q)
@ Return UNSAT or SAT (and counterexample)

B @ Abstract as a boolean satisfiability problem
DNN + oolean
Property g@)) o .

@ lteratively search for satisfying assignment

BCP M m Use heuristics to make decision
m Use propagation to communicate learn
information
Confllct .

m Analyze conflicts, learn conflict
information, and backtrack

m Use a theory solver to quickly deduce
unsatisfiability (UNSAT)

DEDUCTION UNSAT

14

Example: Simple DNN with RelLU activation

To prove f : x1 € [-1,1] A x2 € [-2,2] = x5 < 0:
@ Use NeuralSAT to check if —f is satisfiable
@ NeuralSAT(N A x; € [-1,1] Ax2 € [-2,2] A x5 > 0)
@ NeuralSAT returns UNSAT, indicating f is valid

15

Boolean
Abstraction

DNN +
Property

< BCP HBacktrack)

Analyze-
Conflict

Decide

N

-1.0 —|

<@

1o—>

X1 € [—1,1],X2 S [—2,2],X5 >0

Boolean Abstraction

@ Create 2 boolean variables v3 and v4 to
represent activation status of xz, x4

B v3 = T means x3 is active,
—x1 —05x—1>0

16

Boolean
Abstraction

DNN +
Property

< BCP H Backtrack)
. Analyze-

N

-1.0 —|

<@

1o—>

X1 € [—1,1],X2 S [—2,2],X5 >0

Boolean Abstraction

@ Create 2 boolean variables v3 and v4 to
represent activation status of xz, x4

® v3 = T means x3 is active,
—x1 —05x —1>0

@ Form two clauses {v3 V3 ; v4 V 4}

@ Find boolean values for vs3, v4 that satisfies
the clauses and their implications

16

DNN + Booleap
Property Abstraction

< BCP HBacktrack)

Iteration 1
Analyze-

Conflict

Decide

@ Use abstraction to approximate

g upperbound x5 < 0.55 (from
x1 € [-1,1],x € [-2,2])

*@ T
05 -1.0 1.0
1.0 @
05 -1.0
. " 4’

X1 € [—1,1],X2 € [—2,2],X5 >0

17

DNN + Boolean

Property Abstraction

< BCP H Backtrack)
@ Use abstraction to approximate

. Analyze-
upperbound x5 < 0.55 (from

N
xi € [-1,1], % € [-2,2])

@ Deduce x5 > 0 might be feasible

[teration 1

*@ T
05 -1.0 1.0
1.0 @
05 -1.0
. " 4’

X1 € [—1,1],X2 € [—2,2],X5 >0

DNN + Boolean

Property Abstraction

< BCP H Backtrack)
@ Use abstraction to approximate

. Analyze-
upperbound x5 < 0.55 (from

N
xi € [-1,1], % € [-2,2])

@ Deduce x5 > 0 might be feasible

@-‘IOH @ Decide v3 = F (randomly)

05 -1.0 1.0

@— B new constraint —x3 —0.5x —1 <0
05 10 1.0

ONO

X1 € [—1,1],X2 € [—2,2],X5 >0

[teration 1

DNN + Boolean

Property Abstraction

< BCP H Backtrack)
. Analyze-

Y/

*@ T
05 -1.0 1.0
1.0 @
05 -1.0
. " 4’

X1 € [—1,1],X2 € [—2,2],X5 >0

Iteration 2

@ Approximate upperbound x5 < 0 (due to
additional constraint from vz = F)

@ Deduce x5 > 0 infeasible: CONFLICT

18

DNN + Boolean

Property Abstraction

< BCP H Backtrack)
. Analyze-

Y/

*@ T
05 -1.0 1.0
1.0 @
05 -1.0
. " 4’

X1 € [—1,1],X2 € [—2,2],X5 >0

Iteration 2

@ Approximate upperbound x5 < 0 (due to
additional constraint from vz = F)

@ Deduce x5 > 0 infeasible: CONFLICT

@ Analyze conflict, backtrack and erase
prev. decision v3 = F

@ Learn new clause v3

m v3 will have to be T in next iteration

18

Boolean
Abstraction

DNN +
Property

< BCP HBacktrack)

Analyze-
Conflict

Decide

N

-1.0 —|

<@

1o—>

X1 € [—1,1],X2 S [—2,2],X5 >0 J

Iteration 3

o Decide v = T (BCP, due to learned
clause v3)

B new constraint —x; — 0.5x2 —1 >0

19

DNN + Booleap
Property Abstraction

< BCP H Backtrack) Iteration 3
o Decide v = T (BCP, due to learned
Sontict
ecide N
Conflict

clause v3)
N

@ Approximate new upperbound for xs
(using additional constraint from vz = T)

B new constraint —x; — 0.5x2 —1 >0

Deduce x5 > 0 might be feasible

*@ T
05 -1.0 1.0
1.0 @
05 -1.0
. " 4’

X1 € [—1,1],X2 S [—2,2],X5 >0 J

Decide v, = T (randomly)

Boolean
Abstraction

DNN +
Property

< BCP HBacktrack)

Analyze-
Conflict

Decide

N

-1.0 —|

<@

1o—>

X1 € [—1,1],X2 € [—2,2],X5 >0

After several iterations
@ Learn clauses {v3, 3V v4,V3 V vz}

@ Deduce not possible to satisfy the clauses

20

DNN + Boolean

Property Abstraction

< BCP H Backtrack)
. Analyze-

Y/

*@ T
05 -1.0 1.0
1.0 @
05 -1.0
. " 4’

X1 € [—1,1],X2 € [—2,2],X5 >0

After several iterations
@ Learn clauses {v3, 3V v4,V3 V vz}
@ Deduce not possible to satisfy the clauses

@ Return UNSAT

m Cannot find inputs satisfying

x1 € [-1,1], x2 € [—2,2] that cause N to

return x5 > 0

m Hence, x5 <0 holds (i.e., the original

property is valid)

20

Benchmark ‘ Rank Verifier Score Percent ‘ Verify Falsify

—

NeuralSAT 1437 100.0% | 139 47
nnenum 1437 100.0% | 139 47
af-CROWN 1436 99.9% 139 46
Marabou 1426 99.2% 138 46
MN-BaB 1097 76.3% 105 47

ACAS Xu (13K)

af-CROWN 582 100.0% | 56 2

NeuralSAT 573 085% | 55 23

nnenum 403 69.2% 39 13

MNISTFC (532K) MN-BaB 370 63.6% | 36 10
Marabou 370 63.6% | 35 20

NeuralSAT 1533 100.0% | 149 43
afB-CROWN 1522 99.3% 148 42

CIFAR2020 (2.5M) MN-BaB 1486 96.9% | 145 36

nnenum 518 33.8% 50 18

NeuralSAT 513 100.0% | 23 23

af-CROWN 513 100.0% | 49 23

RESNET _AB (354K) MN-BaB 363 70.8% | 34 23
NeuralSAT 480 100.0% | 48 0

af-CROWN 400 83.3% | 40 0

MNIST_GDVE (3M) MN-BaB 200 41.7% | 20 0

NeuralSAT 4536 100.0% 440 136
af-CROWN 4453 98.2% 432 133
MN-BaB 3516 77.5% 340 116
nnenum 2358 52.0% | 228 78
Marabou 1796 39.6% | 173 66

Overall

PR WNR WP | WL, HR|[OOWNR|[ARAONDR|AN®R

Key Ideas

Formalization of DNN verification
Analyze, learn, and propagate information (significantly reduce search space)
Dedicated DNN-specific theory solver (enable fast proving)

New approach; open doors to new research on heuristics, optimizations
specific to DNNs

22

Key Ideas

@ Formalization of DNN verification

Analyze, learn, and propagate information (significantly reduce search space)
@ Dedicated DNN-specific theory solver (enable fast proving)

@ New approach; open doors to new research on heuristics, optimizations
specific to DNNs

Usability Features
@ Standard: inputs (ONNX) and outputs (SAT/UNSAT/TIMEOUT)

@ Versatile

m Support Feedforward, Convolutional, Residual Networks
B Support RelLU, Sigmoid, Tanh, Power, etc

@ Scale well to large networks with millions of neurons
@ Active development & frequent Updates
@ Fully automatic (require little configurations from users)

22

	AI Safety Verification

