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Chapter 1

Introduction

This book will show you the fundamentals of developing high-quality software using
a modern object-oriented programming (OOP) approach. The goal is to develop
programs that are reliable, efficient, and easy to understand and maintain. We will
use Python for demonstration, but the concepts can be applied to any object-oriented
programming language.

A large part of this book focuses on abstraction, a key concept in OOP that
allows programmers to hide the implementation details and focus on the essential
features. By decoupling the what (the behavior specification) from the how (the
actual implementation), programmers could focus on higher-level design and reuse
code more effectively.

Example Fig. 1.1 demonstrates an abstraction for different types of mammals.
Mammals such as Dog and Cat share common behaviors such as making noise
(speak). We can create a class Mammal that defines these common behaviors, and
then subclasses Dog and Cat that inherit from Mammal and define their own unique
behaviors. These are abstract data types that allow us to work with mammals. Also
notice the specification (e.g., REQUIRES) in the comments that describe what the
method does, not how it does it.
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CHAPTER 1. INTRODUCTION 8

class Mammal:
def __init__(self , name):

self.name = name

def speak(self): pass

class Dog(Mammal ):
def speak(self):

"""
EFFECTS: Return the sound of a dog.

"""
return "Woof!"

class Cat(Mammal ):
def speak(self):

"""
EFFECTS: Return the sound of a dog.
"""
return "Meow!"

Fig. 1.1: Decomposition example: Mergesort



Chapter 2

Procedural Abstraction

Procedural abstraction allows developers to create functions (methods) that hide
program implementation details. For example, the user can just invoke a sort
function without knowing (or caring) about its underlying sorting algorithm. By
separating procedure definition and invocation, we make two important methods of
abstraction: abstraction by parameterization and abstraction by specification.

Abstraction by Parameterization This uses parameters to allow the function
to be run with different input values, making it more versatile and reusable. Fig. 2.1
shows an example of abstract parameterization. The cal_area function calculates
the area of a rectangle given its length and width, which are passed as parameters.

def cal_area(length , width ):
return length * width

# can be used with different values for length and width.
area1 = cal_area(5, 10)
area2 = cal_area(7, 3)

Fig. 2.1: Example: Abstract Parameterization

Abstraction by Specification This specifies on what the function does (e.g.,
sorting), instead of how it does it (e.g., using quicksort or mergsort algorithms,
implemented in C++). By defining a function’s behavior through specifications,
developers can implement the function in different ways as long as it fulfills the
specifications. Similarly, the user can use the function without knowing the imple-
mentation details.

Fig. 2.2 shows an example of abstraction by specification. The exists method
return true if the target item is found in a list of sorted items. The user only needs
to provide a sorted list and a target, but does not need to know the underlying
algorithm used.

9
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def exists(items:List[int], target:int) -> bool:
"""
Find an item in a list of sorted items.

Pre: List of sorted items
Post: True if the target is found , False otherwise.
"""
...

# The user only needs to know that this function checks
# for the existence of an item in a sorted list.
# They don’t need to know the search algorithm or implementation.

Fig. 2.2: Abstraction by Specification

2.1 Specifications

We define abstractions through specifications, which describe what the abstraction
is intended to do rather than how it should be implemented. Specifications can
be written in either formal or informal languages. Formal specifications have the
advantage of being precise and unambiguous. However, in practice, we often use
informal specifications, describing the behavior of the abstraction in plain English
(e.g., the sorting example in Fig. 2.2). Note that a specification is not a program-
ming language or a program. Thus, our specifications won’t be written in code, e.g.,
in Python or Java.

2.1.1 Specifications of a Function

The specification of a function consists of a header and a description of its behavior.
The header gives the signature of the function, including its name, parameters,
and return type. The description describes the function’s behavior, including its
preconditions and postconditions.

Header The header provides the name of the function, the number, order, and
types of its parameters (inputs), and the type of its return value (output). For
instance, the headers for the sort_items function in Fig. 2.2 and the cal_area
function in Fig. 2.1 are as follows
def exists(items: list) -> bool: ...
def calc_area(length: float , width: float) -> float: ...

Note that in a language like Java, the header also indicates exceptions that the
function may throw.

Preconditions and Postconditions A typical function specification in an OOP
language such as Python includes: Preconditions (also called the “requires” clause)
and Postconditions (also called the “effects” clause). Preconditions describe the
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conditions that must be true before the function is called. These state the constraints
or assumptions about the input parameters. If there are no preconditions, the clause
is written as None.

Postconditions, under the assumption that the preconditions are satisfied, de-
scribe the conditions that will be true after the function is called. These typically
state the expected results or outcomes of the function. Moreover, they often describe
the relationship between the inputs and outputs.

The clauses are usually written as comments above the function definition, mak-
ing them easily accessible within the code.
def calc_area(length: float , width: float) -> float:

"""
Calculates the area of a rectangle given its length and width.

Pre: None
Post: The area of the rectangle.
"""
...

For example, the specification of the calc_area function in Fig. 2.1 has (i) no
preconditions and (ii) the postcondition that the function returns the area of a
rectangle given its length and width. Similarly, the exists function in Fig. 2.2 has
the specification that given a list of sorted items (precondition), it returns true if
the item is found in the list, and false otherwise (postcondition). Note how the
specification is written in plain English, making it easy to understand for both
developers and users of the function.

Modifies Another common clause in a function specification is modifies, which de-
scribes the inputs that the function modifies. This is particularly useful for functions
that modify their input parameters.
def add_to_list(input_list , value ):

"""
Adds a value to the input list.

Pre: None
Post: Value is added to the input list.
Modifies: the input list
"""
...

2.1.2 In-class Exercise: User Equality

This exercise touches on some thorny issues with inheritance. There is a lot going on
in this example, but it is a good exercise to understand the subtleties of inheritance.

1. First, look at the Javadoc to understand the behaviors equals() (while the
specification is for Java, the idea is the same in Python).

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#equals-java.lang.Object-
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class User:
def __init__(self , name):

self.name = name

def __eq__(self , other ):
if not isinstance(other , User):

return False
return self.name == other.name

Fig. 2.3: User class

class SpecialUser(User):
""" Don’t do this until you’ve done with User """

def __init__(self , name , id):
super (). __init__(name)
self.id = id

def __eq__(self , other ):
if not isinstance(other , SpecialUser ):

return False
return super (). __eq__(other) and self.id == other.id

Fig. 2.4: SpecialUser class

• Specifically, read carefully the symmetric, reflexive, and transitive prop-
erties of equals().

• Ignore consistency, which requires that if two objects are equal, they
remain equal.

2. For the User class in Fig. 2.3, does equals() satisfy the three equivalence
relation properties? If not, what is the problem?

• Come up with several concrete test cases (e.g., create various User in-
stances) to check the properties.

• If there is a problem, show the test case that demonstrates the problem.

• Explain why the problem occurs and come up with a fix.

3. So the same analysis for the SpecialUser class in Fig. 2.4.

2.2 Designing Specifications

When designing specifications, it is important to consider several factors to ensure
that the function is well-defined. These factors include the strength of the pre- and
post-conditions, whether the function is total or partial, and the avoiding implemen-
tation details in the specification.
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2.2.1 Weakest Pre-conditions

For pre-conditions, we want as weak a constraint as possible to make the function
more versatile, allowing it to handle a larger class of inputs. Logically, a condition
x is weaker than another if it is implied by the other y, i.e., y =⇒ x, or that
x’s constraints are a superset of y’s. For example, the condition x ≤ 5 is weaker
than x ≤ 10 and the input list is not sorted is weaker than the list is sorted (which
is weaker than the list that is both sorted and has no duplicates). The weakest
precondition is True, which indicates no constraints on the input.

2.2.2 Strongest Post-conditions

In contrast, for post-conditions, we want as strong a condition as possible to ensure
that the function behaves as expected. A condition y is stronger than another
condition x if y implies x, i.e., y =⇒ x, or that y’s constraints are a strict subset
of x’s. For example, the condition x ≤ 10 is stronger than x ≤ 5 or that the input
list is sorted is stronger than the list is not sorted.

2.2.3 Total vs Partial Functions

A function is total if it is defined for all legal inputs; otherwise, it is partial. Thus a
function with no precondition (weakest precondition) is total.

Total functions are preferred because they can be used in more situations, es-
pecially when the function is used publicly or in a library where the user may not
know the input constraints. Partial functions can be used when the function is used
internally, e.g., a helper or auxiliary function and the caller is knowledgeable and
can ensure its preconditions are satisfied.

Functions calc_area in Fig. 2.1 and add_to_list in Fig. 2.2 are total because
they can be called with any input. The exists function in Fig. 2.2 is partial because
it only works with sorted lists.

Turning Partial Functions into Total Functions We can often turn a partial
function into a total function in two steps.

1. Move preconditions into postconditions and specify the expected behavior
when the precondition is not satisfied, e.g., throws an Exception

2. Modify the function to satisfy the new specification, i.e., handling the cases
when the preconditions are not satisfied.

For example, the exists function in Fig. 2.2 is turned into the total function
shown in Fig. 2.5.
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def exists(items: List[int], target: int) -> bool:
"""
Find an item in a list of sorted items.

Pre: True
Post: If the input items are not sorted , raise an exception.

Return True if the item is found , False otherwise.

"""

if not is_sorted(items ):
raise Exception (...)

Fig. 2.5: Total Specification for the program in Fig. 2.2

2.2.4 In-class Exercise: Partial and Total Specifications for tail

Consider the following code:
def tail(my_list ):

result = my_list.copy()
result.pop(0)
return result

• What does the implementation of tail do in each of the following cases? You
might want to see the Python document for pop. How do you know: Running
the code or reading Python document?

– list = None

– list = []

– list = [1]

– list = [1, 2, 3]

• Write a partial specification for tail

• Rewrite the specification to be total. Use exceptions as needed.

2.2.5 No implementation details

The specification should not include any implementation details, such as the algo-
rithm used or the data structures employed. This improves flexibility as it allows the
function to be implemented in different ways as long as it satisfies the specification.
For example, the exists function in Fig. 2.2 does not specify the search algorithm
used to find the item in the list.

Some common examples to avoid include: the mentioning of specific data struc-
tures (e.g., arrays, indices), algorithms (e.g., quicksort or mergesort), and exceptions
(e.g., related to IndexError). Also avoid specifications mentioning indices because
this implies the use of arrays.

https://docs.python.org/3/tutorial/datastructures.html
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2.3 Exercise

2.3.1 Specification for Sorting

Write the specification for the generic ascending_sort method below. The specifi-
cation should include preconditions and postconditions.

def ascending_sort(my_list ):
# REQUIRES/PRE:
# EFFECTS/POST:
...

2.3.2 Specification of Binary Search

Come up with the specification for a binary search implementation whose header is
given below. Remember for precondition you want something as weak as possible
and for postcondition as strong as possible. Note that binary search returns the
location (an non-neg integer) of the target value if found, and returns -1 if target
is not found.
def binary_search(arr: List[int], target: int) -> int:

"""
PRE/REQUIRES:
POST/EFFECTS:
"""
...

2.3.3 Loan Calculator

Consider a function that calculates the number of months needed to pay off a loan
of a given size at a fixed annual interest rate and a fixed monthly payment. For
example, a $100,000 loan at an 8% annual rate would take 166 months to discharge
at a monthly payment of $1,000, and 141 months to discharge at a monthly payment
of $1,100. (In both cases, the final payment is smaller than the others; we round
165.34 up to 166 and 140.20 up to 141.) Continuing the example, the loan would
never be paid off at a monthly payment of $100, since the principal would grow
rather than shrink.

• Define a function satisfying the following specification:
def months(principal: int , rate: float , payment: int) -> int:

"""
Calculate the number of months required to pay off a loan.

param principal: Amount of the initial principal (in dollars)
param rate: Annual interest rate (e.g., 0.08 for 8%)
param payment: Amount of the monthly payment (in dollars)

Requires/Pre: principal , rate , and payment all positive and
payment is sufficiently large to drive the principal to zero.
Effects/Post: return the number of months required to pay off the principal
"""
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– The precondition is quite strong, which makes implementing the method
easy. The key step in your calculation is to change the principal on
each iteration with the following formula (which amounts to monthly
compounding):
new_principal = old_principal * (1 + monthly_interest_rate) - payment

– To make sure you understand the point about preconditions, your code
is required to be minimal. Specifically, if it is possible to delete parts of
your implementation and still have it satisfy the requirements, you’ll earn
less than full credit.

• Total specification: Now change the specification to total in which the post-
condition handles violations of the preconditions using exceptions. In addition,
provide a new implementation month that satisfies the new specification.

2.3.4 Partial and Total Functions

1. Write the partial specifications for the below two functions.

2. Modify the specifications to make the functions total.

3. Modify the implementations of the two functions to satisfy the total specifica-
tion.

Recall that specifications do not deal with types (which are taken care by the
function signature and enforced by the type system of compiler/interpreter). In
other words, you do not need to worry about types here and can assume conditions
about types are satisfied.
def divide(a:float , b:float) -> float:

"""
PRE:
POST:
"""
return a / b

def get_average(numbers: list[float]) -> float:
"""
PRE:
POST:
"""
total = sum(numbers)
return divide(total , len(numbers ))



Chapter 3

Data Abstraction

In 1974, Barbara Liskov and Stephen N. Zilles introduced Abstract Data Types
(ADTs) in their influential paper “Programming with Abstract Data Types” as part
of their work on the CLU programming language at MIT. ADTs changed software
design by separating the specification of a data type from its implementation. This
allows developers to define operations on a data structure without exposing the
detailed implementation of data (e.g., calling pop to remove data from a Stack
without knowing the internal details on how stack stores data).

For her pioneering contributions to programming languages and system design,
particularly on ADTs and CLU, Barbara Liskov was awarded the Turing Award in
2008. Today, ADTs are a cornerstone of all modern programming languages.

3.1 Specifications of an ADT

The specification of ADT explains what the operations on the data type do, allowing
users to interact with objects only via methods, rather than accessing the internal
representation. As with functions (§2), the specification for an ADT defines its
behaviors without being tied to a specific implementation.

Structure of an ADT In a modern OOP language such as Python or Java, data
abstractions are defined using classes. Each class defines a name for the data type,
along with its constructors and methods.

Fig. 3.1 shows an ADT class template in Python. It consists of three main
parts. The Overview describes the abstract data type in terms of well-understood
concepts, like mathematical models or real-world entities. For example, a stack
could be described using mathematical sequences. The Overview can also indicate
whether the objects of this type are mutable (their state can change) or immutable.
The Constructor initializes a new object, setting up any initial state required for
the instance. Finally, methods define operations users can perform on the objects.
These methods allow users to interact with the object without needing to know its

17
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class DataType:
"""
Overview: A brief description of the data type and its objects.
"""

def __init__(self , ...):
"""
Constructor to initialize a new object.
"""

def method1(self , ...):
"""
Method to perform an operation on the object.
"""

Fig. 3.1: Abstract Data Type template

internal representation. In Python, self is used to refer to the object itself, similar
to this in Java or C++.

Note that as with procedural specification (§2), the specifications of constructors
and methods of an ADT do not include implementation details. They only describe
what the operation does, not how it is done. Moreover, they are written in plain
English as code comment.

3.1.1 Example: IntSet ADT

Fig. 3.2 gives the specification for an IntSet ADT, which represents unbounded set
of integers. IntSet includes a constructor to initialize an empty set, and methods
to insert, remove, check membership, get the size, and choose an element from the
set. IntSet is also mutable, as it allows elements to be added or removed. mutator
insert and remmove are mutator methods and have a MODIFIES clause. In contrast,
is_in, size, and choose are observer methods that do not modify the object.

3.2 Implementing ADT

To implement an ADT, we first choose a representation (rep) for its objects, then
design constructors to initialize it correctly, and methods to interact with and modify
the rep. For example, we can use a list (or vector) as the rep of IntSet in Fig. 3.2.
We could use other data structures, such as a set or dict, as the rep, but a list is
a simple choice for demonstration.

To aid understanding and reasoning of the rep of an ADT, we use two key
concepts: representation invariant and abstraction function.
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class IntSet:
"""
Overview: IntSets are unbounded , mutable sets of integers.
This implementation uses a list to store the elements , ensuring no duplicates.

"""
def __init__(self):

"""
Constructor
EFFECTS: Initializes this to be an empty set.
"""
self.els = [] # the representation (list)

def insert(self , x: int) -> None:
"""
MODIFIES: self
EFFECTS: Adds x to the elements of this set if not already present.
"""
if not self.is_in(x): self.els.append(x)

def remove(self , x: int) -> int:
"""
MODIFIES: self
EFFECTS: Removes x from this set if it exists. Also returns
the index of x in the list.
"""
i = self.find_idx(x)
if i != -1:

# Remove the element at index i
self.els = self.els[:i] + self.els[i+1:]

return i

def is_in(self , x: int) -> (bool , int):
"""
EFFECTS: If x is in this set , return True. Otherwise False.
"""
return True if find_index(x) != -1 else False

def find_idx(self , x:int)->int:
"""
EFFECTS: If x is in this set , return its index. Otherwise returns -1.
"""
for i, element in enumerate(self.els):

if x == element:
return i

return -1

def size(self) -> int:
"""
EFFECTS: Returns the number of elements in this set (its cardinality ).
"""
return len(self.els)

def choose(self) -> int:
"""
EFFECTS: If this set is empty , raises an Exception.
Otherwise , returns an arbitrary element of this set.
"""
if len(self.els) == 0:

raise Exception (...)
return self.els[-1] # Returns the last element arbitrarily

def __str__(self) -> str:
"""
Abstract function (AF) that returns a string representation of this set.
EFFECTS: Returns a string representation of this set.
"""
return str(self.els)

Fig. 3.2: The IntSet ADT
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3.2.1 Representation Invariant (Rep-Inv)

Because the rep might not be necessarily related to the ADT itself (e.g., the list has
different properties compared to a set), we need to ensure that our use of the rep
is consistent with the ADT’s behavior. To do this, we use representation invariant
(rep-inv) to specify the constraints for the rep of the ADT to capture its behavior.

For example, the rep-inv for a stack is that the last element added is the first
to be removed and the rep-inv for a binary search tree is that the left child is less
than the parent, and the right child is greater. The rep-inv for our IntSet ADT in
Fig. 3.2 is that all elements in the list are unique.

# Rep -inv:
# els is not null , only contains integers and has no duplicates.

The rep-inv must be preserved by all methods (more precisely, mutator methods).
It must hold true before and after the method is called. The rep-inv might be
violated temporarily during the method execution, but it must be restored before
the method returns. For IntSet Notice that the mutator insert method ensures
that the element is not already in the list before adding it.

The rep-inv is decided by the designer and specified in the ADT documentation
as part of the specification (just like pre/post conditions) so that it is ensured at
the end of each method (like the postcondition). Moreover, because rep-inv is so
important, it is not only documented in comments but also checked at runtime.
This is done by invoking a repOK, discussed later, method at the start and end of
each method.

3.2.2 In-Class Exercise: Checking Rep-Invs

class Members:
"""
Overview: Members is a mutable record of organization membership.
AF: Collect the list as a set.

Rep -Inv:
- rep -inv1: members != None
- rep -inv2: members != None and no duplicates in members.
For simplicity , assume None can be a member.

"""

def __init__(self):
""" Constructor: Initializes the membership list."""
self.members = [] # The representation

def join(self , person ):
"""
MODIFIES: self
EFFECTS: Adds a person to the membership list.
"""
self.members.append(person)

def leave(self , person ):
"""
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MODIFIES: self
EFFECTS: Removes a person from the membership list.
"""
self.members.remove(person)

1. Analyze these four questions for rep-inv 1.

• Does join() maintain rep-inv?
• Does join() satisfy its specification?
• Does leave() maintain rep-inv?
• Does leave() satisfy its specification?

2. Repeat for rep-inv 2.

3. Recode join() to make the verification go through. Which rep-invariant do
you use?

4. Recode leave() to make the verification go through. Which rep-invariant do
you use?

3.2.3 Abstraction Function (AF)

It can be difficult to understand the ADT by looking at the rep directly. For example,
we might not be able to visualize or reason about a binary tree or a graph ADT when
using list as the rep. To aid understanding, abstraction function (AF) provides a
mapping between the rep and the ADT. Specifically, the AF maps from a concrete
state (i.e., the els rep in Fig. 3.2) to an abstract state (i.e., the integer set). AF
is also a many-to-one mapping, as multiple concrete states can map to the same
abstract state, e.g., the list [1, 2, 3] and [3, 2, 1] both map to the same set {1,
2, 3}.

Just as with rep-inv, the AF is documented in the class specification. Modern
OOP languages often provide methods implementing the AF, in particular developer
overrides the __str__ method in Python and toString in Java to return a string
representation of the object. For example, the __str__ method in Fig. 3.2 returns
a string representation of the set.

3.2.4 In-Class Exercise: Stack ADT

In this exercise, you will implement a Stack ADT. A stack is a common data struc-
ture that follows the Last-In-First-Out (LIFO) principle. You will:

1. Choose a Representation (rep) for the stack.

2. Define a Representation invariant (rep-inv)

3. Write a repOK method
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4. Provide the specifications of basic stack operations (push, pop, is_empty) and
implement these methods accordingly.

5. Define an Abstraction Function (AF)

6. Implement __str__() to return a string representation of the stack based on
the AF

3.3 Mutability vs. Immutability

An ADT can be either mutable or immutable, depending on whether their objects’
values can change over time. An ADT should be immutable if the objects it mod-
els naturally have unchanging values, such as mathematical objects like integers,
polynomials (Polys), or complex numbers. On the other hand, an ADT should be
mutable if it models real-world entities that undergo changes, such as an automobile
in a simulation, which might be running or stopped, or contain passengers, or if the
ADT models data storage, like arrays or sets.

Immutability is beneficial because it offers greater safety and allows sharing of
subparts without the risk of unexpected changes. Moreover, immutability can sim-
plify the design by ensuring the object’s state is fixed once created. However, im-
mutable objects can be less efficient, as creating a new object for each change can
be costly in terms of memory and time.

Converting from mutable to immutable Given a mutable ADT, it is possible
to convert it to an immutable one by ensuring that the rep is not modified by any
method. This can be achieved by making the rep private and only allowing read-only
access to it. In Python, this can be done by using the @property decorator to create
read-only properties. For example, the els list in Fig. 3.2 can be made read-only by
defining a property method elements that returns a copy of the list.

class IntSet:
def __init__(self):

self.__els = [] # Private rep
@property
def self.els(self):

return self.__els

Moreover, we need to convert mutator methods into observer methods, which
make a copy of the rep, modify it, and return the modified rep object.

def insert_immutable(self , x: int) -> IntSet:
new_set = self.els.copy()
if not self.is_in(x):

new_set = new_set.append(x)
return new_set

If the mutator returns a value v, then our new method returns a tuple consisting
of (i) the new rep object and the return the value v.
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def remove_immutable(self , x: int): -> (IntSet , int):
i = self.find_idx(x)
new_set = self.els.copy()
if i != -1:

# Remove the element at index i
new_set = self.els[:i] + self.els[i+1:]

return (new_set , i)

If you do not want to return multiple values (e.g., like in Java), then you can
create two methods, one for returning the value and the other for returning the new
rep object. For example, a mutator pop method of a Stack would result into two
methods: pop2 returns the top element and pop3 returns the new stack with the top
element removed.

Finally, it is important that while it is possible to convert a mutable ADT to an
immutable one as shown, mutability or immutability should be the property of the
ADT type itself, not its implementation. Thus, it should be decided at the design
stage and documented in the ADT specification.

3.3.1 In-class Exercise: Immutable Queue

Rewrite the mutable Queue implementation in Fig. 3.3 so that it becomes im-
mutable. Keep the rep variables elements and size.

3.4 Exercise

3.4.1 Polynomial ADT

Use the Poly ADT in Fig. 3.4 to answer the following questions. Use the Stack
ADT in Fig. B.1 as an example.

1. Part 1

(a) Write an Overview that describes what Poly does. You must provide
some examples to demonstrate (e.g., Poly(2,3) means what?).

(b) Provide the specifications for all methods in the ADT.
(c) Write the rep used in this code. Describe how this rep represents Poly.
(d) Provide the rep-inv for the ADT. Note, this would be the constraints

over the rep variable(s).
(e) Write a repOK method that checks the rep-inv.
(f) Describe the AF in this code. Use __str__ to help.

2. Part 2

(a) Introduce a fault (i.e. "bug") that breaks the rep-inv. Try to do this
with a small (conceptual) change to the code. Show that the rep-invariant
is broken with a concrete test case.
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class Queue:
"""
A generic Queue implementation using a list.
"""

def __init__(self):
"""
Constructor
Initializes an empty queue.
"""
self.elements = []
self.size = 0

def enqueue(self , e):
"""
MODIFIES: self
EFFECTS: Adds element e to the end of the queue.
"""
self.elements.append(e)
self.size += 1

def dequeue(self):
"""
MODIFIES: self
EFFECTS: Removes and returns the element at the front of the queue.
If the queue is empty , raises an IllegalStateException.
"""
if self.size == 0:

raise Exception (...)

result = self.elements.pop(0) # Removes and returns the first element
self.size -= 1
return result

def is_empty(self):
"""
EFFECTS: Returns True if the queue is empty , False otherwise.
"""
return self.size == 0

Fig. 3.3: Mutable Queue
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class Poly:
def __init__(self , c=0, n=0):

if n < 0:
raise ValueError("Poly(int , int) constructor: n must be >= 0")

self.trms = {}
if c != 0:

self.trms[n] = c

def degree(self):
if len(self.trms) > 0:

return next(reversed(self.trms.keys ()))
return 0

def coeff(self , d):
if d < 0:

raise ValueError("Poly.coeff: d must be >= 0")
return self.trms.get(d, 0)

def sub(self , q):
if q is None:

raise ValueError("Poly.sub: q is None")
return self.add(q.minus ())

def minus(self):
result = Poly()
for n, c in self.trms.items ():

result.trms[n] = -c
return result

def add(self , q):
if q is None:

raise ValueError("Poly.add: q is None")

non_zero = set(self.trms.keys ()). union(q.trms.keys ())
result = Poly()
for n in non_zero:

new_coeff = self.coeff(n) + q.coeff(n)
if new_coeff != 0:

result.trms[n] = new_coeff
return result

def mul(self , q):
if q is None:

raise ValueError("Poly.mul: q is None")

result = Poly()
for n1, c1 in self.trms.items ():

for n2, c2 in q.trms.items ():
result = result.add(Poly(c1 * c2, n1 + n2))

return result

def __str__(self):
r = "Poly:"
if len(self.trms) == 0:

r += " 0"
for n, c in self.trms.items ():

if c < 0:
r += f" - {-c}x^{n}"

else:
r += f" + {c}x^{n}"

return r

Fig. 3.4: Polynomial ADT
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(b) Analyzed your bug with respect to the method specifications of Poly. Are
all/some/none of the specification violated?

(c) Do you think your fault is realistic? Why or why not?

3.4.2 Immutability 1

The below class Immutable is supposed to be immutable. However, it is not. Identify
the issues and fix them.

1. Which of the lines (A–F) has a problem with immutability? Explain why by
showing code example, i.e., show code involving problematic lines; show how
that breaks immutability.

2. For each line that has a problem. Write code to fix it so that the class is
immutable.

Notes:

1. Python or Java, immutable types include int, float, str, tuple. and mutable
types include list and dict.

2. In Python, you can use copy method to create a copy of a list and deepcopy
for more complicated data structures like dict.

class Immutable:
def __init__(self , mstr: str , mint: int , mlist: list[str ]):

self._mstr = mstr # Line A
self._mint = mint # Line B
self._mlist = mlist.copy() # Line C

def get_mstr(self) -> str: return self._mstr # Line D
def get_mint(self) -> int: return self._mint # Line E
def get_mlist(self) -> list[str]: return self._mlist # Line F

3.4.3 Immutability 2

Do the same with the previous exercise (§3.4.2) but now with the below class
Immutable2.
class Immutable2:

def __init__(self , username: str , user_id: int , data1: list[str], data2: dict):
self._username = username # Line A
self._user_id = user_id # Line B
self._data1 = data1 # Line C
self._data2 = data2 # Line D

def get_username(self) -> str: return self._username
def get_user_id(self) -> int: return self._user_id
def get_data1(self) -> list[str]: return self._data1 # Line E
def get_data2(self) -> dict: return self._data2 # Line F
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Types

In 1999, NASA’s Mars Climate Orbiter mission ended in failure due to a simple yet
catastrophic software error. The spacecraft, which cost $125 million to build and
launch, was launched on December 11, 1998 to study Mars. After a 9-month journey,
the spacecraft approached Mars on September 23, 1999, and was supposed to enter
a stable orbit around Mars at an altitude of about 226 kilometers (140 miles) above
the planet’s surface. However, the spacecraft instead plunged much deeper into the
Martian atmosphere, to an estimated altitude of 57 kilometers (35 miles), causing
it to either burn up or crash on the surface and resulting in a complete loss of the
mission.

The cause of the failure was a software error involving typing mismatch between
imperial units (pounds-force) and metric units (newtons) in the software that con-
trolled the spacecraft’s thrusters. The software expected data in metric units, but
the thruster data was provided in imperial units, leading to the incorrect trajectory
calculations. This mismatch was not caught during testing. This failure not only
cost NASA a significant financial investment but also set back the Mars exploration
program.

4.1 Type Systems in OOP

In OOP, the type system forms the foundation for defining how ADT (§3) is rep-
resented and manipulated in a language. Type systems provide rules for assigning
types to variables, expressions, functions, and objects, enabling the development of
reliable and efficient software. A well-defined type system also enforces contracts
between components, ensuring that data is used appropriately.

This chapter covers key concepts in the type system of OOP languages, partic-
ularly in the context of Python, where both static and dynamic typing coexist. We
will explore topics like polymorphism, inheritance, dynamic dispatching, and more,
discussing their motivation, core concepts.

27
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from abc import ABC , abstractmethod

class Mammal(ABC):
"""
Abstract class
"""

@abstractmethod
def speak(self):

raise NotImplementedError("Subclasses should implement this!")

class Dog(Mammal ):
def speak(self):

return "Woof!"

def bark(self):
return "Bark!"

class Cat(Mammal ):
def speak(self): return "Meow!"

# Using polymorphism
def make_animal_speak(mammal: Mammal ): return mammal.speak()

mammals = [Dog(), Cat()]
for m in mammals:

print(make_animal_speak(m))

Fig. 4.1: Polymorphism

4.2 Polymorphism

Polymorphism is a cornerstone of OOP that allows objects of different types to be
treated as objects of a common supertype. This facilitates flexibility in programming
by enabling the use of a unified interface for different types of objects, reducing
redundancy and increasing code reuse.

Fig. 4.1 shows an example of subtype polymorphism, where a Mammal class has
two subclasses, Dog and Cat, each implementing the speak method differently. The
make_mammal_speak function can then be used to make any mammal speak, regard-
less of its specific type.

4.3 Inheritance

Inheritance creates a hierarchical relationship between classes and allows a class to
be a subclass or subtype of one other class (its superclass or supertype). Fig. 4.1 shows
an example of inheritance. Mammal is the superclass of Dog and Cat. Dog and Cat are
the subclasses of Mammal They override speak to provide a specific implementation.
In addition to overriding the speak method in Mammal, Dog defines a new method
bark that is specific to dogs.
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This is an example of single inheritance, where a subclass can inherit from only
one superclass. Python also supports multiple inheritance, where a subclass can in-
herit from multiple superclasses. For example, an HybridVehicle class could inherit
from both Car and BatteryVehicle classes. However, multiple inheritance can lead
to complex hierarchies and potential conflicts, so it should be used judiciously.

4.4 Abstract Class

OOP has two types of classes: concrete and abstract classes. Concrete classes provide
a full implementation of the type while abstract classes provide at most a partial
implementation of the type. Abstract classes cannot be instantiated (no objects)
since some of their methods are not yet implemented (abstract methods). Abstract
classes can have both abstract (to be implemented by subclasses) and concrete meth-
ods (already implemented or partially implemented).

In Python abstract classes are defined using the abc module, which provides the
ABC class and the abstractmethod decorator. The ABC class is used as a base class
for abstract classes, and the abstractmethod decorator is used to mark methods as
abstract. In Fig. 4.1, Mammal is an abstract class and contains an abstract method
speak that its subclasses must implement. In Java, abstract classes and methods
are defined using the abstract keyword, e.g., public abstract class Mammal and
public abstract void speak();.

4.5 Interface

Interface is a special type of abstract classes that contains only abstract methods (no
concrete methods). They define a specification that classes must adhere to, providing
the methods that must be implemented by any class that implements the interface.
Multiple classes can implement the same interface, allowing for polymorphism and
flexibility in the design.

In Python, interfaces are not explicitly defined, but the concept can be imple-
mented using abstract classes with only abstract methods. For example, the abstract
class Mammal in Fig. 4.1 acts as an interface that specifies the speak method that
all mammals must implement. In Java, interfaces are explicitly defined using the
interface keyword, e.g., interface Mammal, and methods are declared without
a body, e.g., public void speak();. A class can implement multiple interfaces,
allowing for more flexibility in defining contracts between classes.

Comparable interface A good example of an interface is Comparable, which
defines a single method compare_to that allows objects to be compared to each
other. Any class that implements Comparable can be compared to other objects of
the same type, enabling sorting and other operations that require comparison.
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The code below demonstrates the use of the Comparable interface in Python.
The Number class implements the Comparable interface by defining the compare_to
method, which compares two Number objects based on their values. The sort func-
tion uses the compare_to method to sort a list of Number objects.

from abc import ABC , abstractmethod
from typing import List

# Define a Comparable interface using ABC
class Comparable(ABC):

@abstractmethod
def compare_to(self , other: "Comparable") -> int:

""" Compares this object with another."""
pass

# Implement Comparable in a concrete class
class Number(Comparable ):

def __init__(self , value: int):
self.value = value

def compare_to(self , other: "Number") -> int:
if self.value < other.value:

return -1
elif self.value > other.value:

return 1
else:

return 0

# Polymorphic sorting function that relies on the compare_to method
def sort(items: List[Comparable ]) -> List[Comparable ]:

return sorted(items , key=lambda x: x.value)

# Usage
numbers = [Number (3), Number (1), Number (4), Number (2)]
sorted_numbers = sort(numbers)
print(sorted_numbers) # Output: [1, 2, 3, 4]

4.5.1 Element Subtype vs Related Subtype

There are two types of subtypes: element subtype and related subtype. Element
subtype relies on a common interface or abstract class, e.g., Number is an element
subtype of Comparable. While this common approach allows for polymorphism, it
requires all potential types must be pre-planned to fit the hierarchy.

On the other hand, a related subtype does not directly rely on a common interface
or abstract class (which might be designed much later). Instead, this approach
creates a related subtype that implement the desired interface and then adapts it to
the existing hierarchy. The code below demonstrates the use of a related subtype,
where Price is adapted to PriceComparable, which implements Comparable, to
allow sorting of Price objects.
class Price:

def __init__(self , amount: float):
self.amount = amount
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class PriceComparable(Comparable ):
def __init__(self , price: Price):

self.price = price
def compare_to(self , other: "PriceComparable") -> int:

if self.price.amount < other.price.amount:
return -1

elif self.price.amount > other.price.amount:
return 1

else:
return 0

# sorting using related subtype
prices = [Price (3.0) , Price (1.0) , Price (4.0) , Price (2.0)]
price_comparators = [PriceComparable(p) for p in prices]
sorted_prices = sort(price_comparators)

4.6 Dynamic Dispatching

Dynamic dispatching refers to how a program selects which method to invoke when
a method is called on an object. It allows the correct method to be invoked based on
the runtime type of the object, even if the reference to the object is of a more gen-
eral (superclass) type. This is particularly useful when working with inheritance and
polymorphism, where subclasses override methods from a superclass. The distinc-
tion between dynamic dispatching and static dispatching lies in when the decision
about which method to invoke is made—either at runtime (dynamic) or compile-time
(static).

In Fig. 4.1 the make_mammal_speak method will invoke the speak method of the
correct subclass based on the runtime type of the object. This is dynamic dispatching
in action, where the method speak to be called is determined at runtime based on
the actual type of the object. However, if we explicitly create a Dog instance and
call speak on it, the method is statically dispatched, as the compiler knows the type
of the object at compile-time and can directly call the correct method.

The code below demonstrates the difference between static and dynamic dis-
patching. The Dog object d is statically dispatched, while the Mammal object m is
dynamically dispatched.

Dog d = Dog();
d.speak (); # Static dispatching

Mammal m = Dog();
m.speak (); # Dynamic dispatching

4.7 Liskov Substitution Principle (LSP)

The Liskov Substitution Principle (LSP) is a fundamental concept of object-oriented
design, which ensures that objects of a subclass should be able to replace objects
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of the superclass without altering the correctness of the program. LSP promotes
proper design and enforces correct use of inheritance. Violating LSP can lead to
unexpected behavior and errors in the program, as the assumptions made about the
superclass may no longer hold for the subclass.

The main idea of LSP is that a subclass is-a superclass and can do everything
the superclass can do, and can also do more. For example, a Dog is a Mammal and can
speak like any mammal, but it can also bark, which is specific to dogs. This enables
substitution of objects of the subclass for objects of the superclass, allowing for
polymorphism and dynamic dispatching to work correctly. The make_animal_speak
function in Fig. 4.1 demonstrates LSP by accepting any Mammal object and making
it speak, regardless of its specific type.

4.7.1 Rules

If S is a subtype of T, then objects of type T may be replaced with objects of type S
without altering any of the desirable properties of the program. This means whenever
you use T, you can use S instead. To achieve this, we must follow the following rules:

Signature Rule The signatures of methods of S must strengthen methods of T. In other words,
the methods of S are a superset of the methods of T. Thus, if T has n methods,
S also has n methods and additional ones (methods specific to S).

Method Rule The specification of f’ strengthens that of f. This means that the precondi-
tions of f’ must be weaker or equal to the preconditions of f, i.e., f’ accepts
more inputs than f. The postconditions of f must be stronger or equal to that
of f. This means that f’ is more precise and specific than f.

Property Rule The subtype must preserve all properties of the supertype. For example, the
rep-invariant of the subtpe S must be stronger or equal to that of the supertype
T. This means S should maintain or strengthen the properties (including rep
invariants) of T

4.7.2 In-Class Exercise: Bank Account

4.8 Encapsulation

Encapsulation is a fundamental concept in OOP that combines data and methods
into a single unit called a class. Encapsulation allows the class to control access
to its data and methods, ensuring that they are used correctly and consistently.
This helps to prevent misuse and errors, and promotes good design practices such
as information hiding and modularity.

Encapsulation is achieved through the use of access modifiers, which specify
the level of access to class members. In Java, access modifiers are enforced by
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class BankAccount:
def __init__(self , balance: float ):

self._balance = balance if balance >= 0 else 0

def repOK(self):
return self._balance >= 0

def deposit(self , amount: float) -> bool:
"""
REQUIRES: amount must be positive
EFFECTS: balance is the original balance plus deposited amount
"""
if amount <= 0:

return False
self._balance += amount
# check_repOK ()
return True

def withdraw(self , amount: float) -> bool:
# REQUIRES: amount must be positive and less than or equal to balance
# EFFECTS: balance is the original balance minus withdrawn amount

if amount <= 0 or amount > self._balance:
return False

self._balance -= amount
self.check_repOK ()
# check_repOK ()
return True

class BonusBankAccount(BankAccount ):
def __init__(self , balance: float , bonus_interest: float ):

super (). __init__(balance)
self._bonus_interest = bonus_interest

def deposit(self , amount: float) -> str:
# REQUIRES: (same) amount must be positive
# EFFECTS: (stronger) deposit and also add bonus interest

stats = super (). deposit(amount)
if stats:

# deposit successful , add interest
self._balance += self._bonus_interest * amount

# check_repOK ()
return stats

def withdraw(self , amount: float) -> bool:
"""
REQUIRES: (weaker) allow zero withdrawals , which are ignored
EFFECTS: (same) balance is the original balance minus withdrawn amount
"""
if amount == 0:

return True # Zero withdrawal is considered a no-op
ret = super (). withdraw(amount)
# check_repOK ()
return ret

def repOK(self):
"""
Stronger Rep -inv: balance and bonus interest must be non -negative
"""
return super (). repOK () and self._bonus_interest >= 0

Fig. 4.2: Liskov Substitution Principle demonstration
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the language, and there are four levels of access: private, protected, package-private
(default), and public. In Python, access modifiers are not enforced by the language,
but conventions are used to indicate the intended level of access. For example,
underscore (_) is used to indicate private or protected attribute (variable).

Encapsulation avoids direct access to the internal representation of a class, e.g.,
rep-invariants, which can lead to unintended side effects and break the class’s invari-
ants. Instead, access to the class’s data should be controlled through methods, such
as getters and setters methods.

In the BankAccount class in Fig. 4.2, the _balance attribute is a private mem-
ber, and access to it is controlled through the deposit and withdraw methods.
This ensures that the balance is updated correctly and that the rep-invariant is
maintained (repOK). The BonusBankAccount class extends BankAccount and adds
a _bonus_interest attribute, which is also a private member that is not exposed
directly.

4.8.1 In-class: Polymorphism concepts: Vehicle

You will design a system that models different types of vehicles (e.g., cars, bicycles).
Each vehicle has the ability to start, stop, and display its details. Vehicles should
differ in their implementation of these behaviors. You will use abstract classes and
interfaces to define the basic structure and ensure that your system adheres to OOP
principles.

1. Create an abstract class Vehicle that has

(a) An encapsulated attribute for speed.

(b) Abstract methods: start(), stop(), and display().

2. Define an interface called Refuelable, with a method refuel(amount:int)

3. Create concrete subclasses

(a) Create Car and Bicycle classes that inherit from Vehicle.

(b) Car also implements the Refuelable interface (because it uses fuel).

(c) Implement methods to start, stop, display, and refuel if applicable.

(d) Ensure each class encapsulates its specific properties (e.g., fuel_level
for cars).

4. Demonstrate Polymorphism and other OOP principles

(a) Create a function operate_vehicle(vehicle:Vehicle) that accepts any
vehicle type and calls its start, stop, and display methods. This func-
tion demonstrates polymorphism and dynamic dispatching.
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(b) Create test cases to demonstrate LSP by substituting instances of Car
and Bicycle for Vehicle in the operate_vehicle function.

(c) Protect rep data and other attributes and access them through setters
and getters methods.

(d) Provide proper document and specifications for your code (e.g., class
Overview, rep-invs, method specifications, AF, repOK).

4.9 Exercise

4.9.1 LSP: Market subtype

Determine whether the below LowBidMarket and LowOfferMarket classes are proper
subtypes of Market. Specifically, for each method, list whether the precondition is
weaker, the postcondition is stronger, and conclude whether LSP holds.

Note that this is purely a “paper and pencil” exercise. No code is required. Write
your answer so that it is easily understandable by someone with only a passing
knowledge of LSP.
class Market:

def __init__(self):
self.wanted = set() # items for which prices are of interest
self.offers = {} # offers to sell items at specific prices

def offer(self , item , price):
"""
Requires: item is an element of wanted.
Effects: Adds (item , price) to offers.
"""
if item in self.wanted:

if item not in self.offers:
self.offers[item] = []

self.offers[item]. append(price)

def buy(self , item):
"""
Requires: item is an element of the domain of offers.
Effects: Chooses and removes some (arbitrary) pair (item , price) from

offers and returns the chosen price.
"""
if item in self.offers and self.offers[item]:

return self.offers[item].pop (0) # Removes and returns the first price
return None

class LowBidMarket(Market ):
def offer(self , item , price):

"""
Requires: item is an element of wanted.
Effects: If (item , price) is not cheaper than any existing pair

(item , existing_price) in offers , do nothing.
Else add (item , price) to offers.

"""
if item in self.wanted:

if item not in self.offers:
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class A:
def reduce(self , x):

"""
Effects: if x is None , raise ValueError;

if x is not appropriate , raise TypeError;
else , reduce this by x.

"""

class B:
def reduce(self , x):

"""
Requires: x is not None.
Effects: if x is not appropriate , raise TypeError;

else , reduce this by x.
"""

class C:
def reduce(self , x):

"""
Effects: if x is None , return normally with no change;

if x is not appropriate , raise TypeError;
else , reduce this by x.

"""

Fig. 4.3: LSP Exercise

self.offers[item] = []
# Only add if price is lower than existing prices
if not self.offers[item] or price < min(self.offers[item ]):

self.offers[item]. append(price)

class LowOfferMarket(Market ):
def buy(self , item):

"""
Requires: item is an element of the domain of offers.
Effects: Chooses and removes the pair (item , price) with the

lowest price from offers and returns the chosen price.
"""
if item in self.offers and self.offers[item]:

# Find and remove the lowest price from the list
lowest_price = min(self.offers[item])
self.offers[item]. remove(lowest_price)
return lowest_price

return None

4.9.2 LSP: Reducer

For the classes A, B, and C in Fig. 4.3, determine whether LSP holds in the
following cases. Specifically, for each case, list whether the precondition is weaker,
the postcondition is stronger, and conclude whether LSP holds.

1. B extends A.

2. C extends A
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3. A extends B

4. C extends B

5. A extends C

4.9.3 LSP Analysis

Consider the following classes with their specifications for the update() method:
class A:

def update(self , value ):
"""
Effects/Post: If value is not valid , do nothing;

otherwise , update this with value.
"""

class B:
def update(self , value ):

"""
Requires/Pre: value must be an integer.
Effects/Post: If value is valid , update this with value;

otherwise , do nothing.
"""

class C:
def update(self , value ):

"""
Effects/Post: If value is invalid , set default update;

otherwise , update this with value.
"""

For each case below, determine if LSP holds by checking whether the precon-
ditions are weaker and the postconditions are stronger, and conclude whether LSP
holds. Note that as soon as one rule is violated, LSP does not hold.

1. B extends A

2. C extends A

3. A extends B

4. C extends B

5. A extends C
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Iterators

Iterators and generators are powerful concepts in OOP that enable efficient traversal
and on-the-fly computation of sequences of data. They allow developers to handle
large datasets, abstract complex data traversal patterns, and create custom iterators
for any type of object.

History The idea of iterators in OOP was pioneered by the CLU language in the
1970s, developed by Barbara Liskov. CLU introduced iterators as a core language
feature, allowing traversal of collections without exposing internal structures.
This innovation laid the foundation for modern iterator designs and showed how
encapsulating traversal could lead to cleaner, more maintainable code. C++ in the
1980s introduces iterators through its STL. Iterators was further solidified by the
Design Patterns book by the Gang of Four (GoF) in 1994, which formalized iterator
patterns, emphasizing the separation of traversal from data structure.

Java, released in 1995, built on these ideas through its Iterator interface, standardiz-
ing the way collections were traversed across the language. Java’s approach unified
data traversal, promoting encapsulation and abstraction in OO. Python introduces
generators in 2001 and allowed functions to produce values lazily, one at a time,
without storing the entire sequence in memory. This enables efficient data processing
for large or infinite sequences and emphasizes efficient iteration over data in modern
languages.

5.1 Motivation

Let’s consider a scenario where you need to generate Fibonacci numbers. A common
but inefficient approach is to generate Fibonacci numbers up to a certain limit and
store all them in a list, which consumes a lot of memory.
def generate_fib_list(n: int) -> list[int]:

fib_sequence = [0, 1]
for _ in range(2, n):

fib_sequence.append(fib_sequence [-1] + fib_sequence [-2])

38
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return fib_sequence

# Create the first 100K Fibs; consume lots of memory for storing all numbers
fib_numbers = generate_fib_list (10**6)
print(fib_numbers [:10]) # [0, 1, 1, 2, 3, 5, 8, 13, 21, 34] # only use first 10

This approach is inefficient because it generates all Fibonacci numbers up to a
certain limit and stores them in a list, which consumes a lot of memory, especially
for large sequences. Also, this approach is wasteful because it generates all Fibonacci
numbers at once, even if only a few are needed. A more efficient approach is to use
an iterator or generator to produce Fibonacci numbers on the fly, only when needed.
# Efficient generator function that yields Fibonacci numbers on demand
def fib_generator(n: int):

a, b = 0, 1
for _ in range(n):

yield a
a, b = b, a + b

print(list(fib_generator (10))) # [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

Using generator functions, we can efficiently generate Fibonacci numbers on de-
mand, reducing memory consumption and improving performance. Generators pro-
duce values one at a time, only when needed, making them ideal for large datasets
or infinite sequences.

5.2 Iterators

An iterator is an ADT that allows you to traverse through all the elements of a
collection, such as a list, tuple, or custom data structure, without exposing the
underlying details of the collection (i.e., encapsulation).

Key Concepts of Iterators:

• Iteration Methods: An iterator object implements two key methods: __iter__()
and __next__().

– __iter__(): Returns the iterator object itself and is implicitly called at
the start of loops.

– __next__(): Returns the next element in the sequence and raises a Sto-
pIteration exception when there are no more elements.

• State Management: Iterators manage their own state, allowing them to keep
track of the current position in the collection.

class Countdown:
def __init__(self , start: int):

self.current = start

def __iter__(self):
return self

def __next__(self):
if self.current <= 0:

raise StopIteration
else:

current_value = self.current
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self.current -= 1
return current_value

# Usage of the custom iterator
countdown = Countdown (5)

for number in countdown:
print(number)

# Output: 5, 4, 3, 2, 1

In the example above, the Countdown class implements iteration by defining
the __iter__() and __next__() methods. The __iter__() method returns the
iterator object itself, while __next__() manages the countdown state by returning
the next element in the countdown sequence and stopping the iteration by raising
the StopIteration exception when the countdown reaches zero.

Benefits of Iterators

• Memory Efficiency: Iterators retrieve elements one at a time, reducing memory
usage compared to loading all elements at once.

• Encapsulation: Iterators hide the internal structure of the collection, providing
a clean, consistent interface for traversal.

• Flexibility: Custom iterators can be defined for any object, making them
adaptable to a wide range of data structures.

5.3 Generator

A generator is a special iterator that uses the yield keyword. Generators allow you
to turn a method into one that behaves like an iterator, without having to create a
separate iterator class. Generator thus has the same benefits as iterators, such as
memory efficiency and encapsulation, and does not require the explicit implementa-
tion of the __iter__() and __next__() methods.
# Generator function for a countdown
def countdown(start: int):

while start > 0:
yield start
start -= 1

# Usage of the generator
for number in countdown (5):

print(number)
# Output: 5, 4, 3, 2, 1

Instead of defining the Countdown class as an iterator, the countdown function
is defined as a generator that yields the countdown sequence. Each call to yield
returns the current value of start and saves the function’s state, allowing it to
resume where it left off when called again.
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Benefits of Generators

• Conciseness: Generators provide a more straightforward syntax for creating
iterators.

• Performance: They generate values on demand, reducing memory consumption
compared to traditional lists.

• Enhanced Readability: Generator functions are typically easier to understand
and maintain compared to an iterator class.

5.4 In-Class Exercise: Prime Number

A prime number is a natural number greater than 1 that has no positive divisors
other than 1 and itself. In this exercise, you will implement three different approaches
to generate prime numbers: a non-iterator method, a custom iterator class, and a
generator function. You will compare the performance of these approaches and
observe the benefits of using iterators and generators.

1. Write a non-iterator and non-generator method gen_prime that generates
prime numbers up to a specified limit.

(a) Test the iterator by printing all prime numbers that is less than 50.
(b) Measure the performance of the iterator by generating all prime numbers

that your computer can handle (in Python, use time(...)). Try various
limits and measure the time.

2. Write a custom iterator called PrimeNumberIterator that generates prime
numbers up to a specified limit.

(a) The class needs to have __iter__() and __next__() methods.
(b) Use a helper function to check for prime numbers (reuse the code in

gen_prime).
(c) Raise StopIteration when the current number exceeds the limit.
(d) Test the iterator by printing all prime numbers that is less than 50.
(e) Measure the performance of the iterator by generating all prime numbers

that your computer can handle like before. Try various limits and measure
the time.

3. Write a generator function called gen_prime_generator that yields prime
numbers up to a specified limit (this means using the yield keyword).

(a) Test the generator by printing all prime numbers that is less than 50.
(b) Measure the performance of the generator by generating all prime num-

bers that your computer can handle like before. Try various limits and
measure the time.
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5.5 Exercise

5.5.1 Perfect Number Generation

A perfect number is a positive integer that is equal to the sum of its proper divisors,
excluding itself (e.g., 6, 28). You will implement three different approaches to find
perfect numbers up to a given limit, comparing their performance and resource usage.

For this exercise, you can use either Python or Java. You need to submit your
code with clear documentation on how to run and test your code. That is, you must
explicitly state the commands to run your code and the expected output. You will
also need to provide screenshots or logs of the execution results, including the time
taken and memory usage.

If you do not provide clear documentation, you will not receive credit. If we
cannot run your code, you will not receive credit. If we do not see the results you
claim, you will not receive credit.

1. Part 1: Generate Perfect Numbers Without Iterators or Generators. Write a
method gen_perfect that generates perfect numbers up to a given positive
value n, i.e., generate perfect numbers less than or equal to n. You will not use
iterators or generators and store all perfect numbers in a list.

(a) Play around with different n (e.g., 10,000, 100,000) to see how the program
performs. Aim for about 20 seconds of execution time.

(b) Print out the first 5 perfect numbers generated. Note that if this takes
too long, print out the first n numbers that seems to take reasonable time.
Be sure to document and explain your choice of n.

(c) Measure execution time and memory usage, which should be relatively
high due to high computational demands and storage of all perfect num-
bers. For Python, use timeit and tracemalloc modules to measure time
and memory usage.

2. Part 2: Implement a custom iterator called PowerNumberIterator for perfect
numbers. You can reuse the code from part 1. After that, do exactly the
analysis that you did in Part 1, i.e., play with different n values, print out
the first 5 numbers generated, and measure the performance of the iterator.
You should see a significant improvement in memory usage and execution time
compared to the non-iterator approach.

3. Part 3: Use a generator function gen_power_generator to yield perfect num-
bers. Reuse the code from part 1 and make changes to it to use generator.
Then do the same analysis as in Part 1 and Part 2.

4. Part 4: Write a short report comparing the performance of the three ap-
proaches. Include the time taken, memory usage, and ease of implementation.
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Discuss the benefits of using iterators and generators over the non-iterator
approach.

5.5.2 Iterators and Generators Multiple Choice

1. What does this class represent?
class Counter:

def __init__(self , start , end):
self.current = start
self.end = end

def __iter__(self):
return self

def __next__(self):
if self.current > self.end:

raise StopIteration
else:

self.current += 1
return self.current - 1

(a) A list that can be iterated through once.

(b) An infinite loop.

(c) An iterator that generates numbers between start and end, inclusive.

(d) A generator that yields values on demand.

2. What is main advantage of using a generator in this example?
def count_down(n):

while n > 0:
yield n
n -= 1

(a) It stores all the countdown numbers in mem at once.

(b) It allows for lazy evaluation, producing numbers one at a time without
storing in memory.

3. What is returned by fibonacci?
def fibonacci(n):

a, b = 0, 1
for _ in range(n):

yield a
a, b = b, a + b

(a) The sum of all Fib numbers up to n.

(b) Fib numbers up to n, one by one, using lazy evaluation.

(c) The first n Fib numbers.
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(d) The Fibonacci sequence stored as a tuple.

4. What happens if you try to convert the generator generate_squares to a list?
def generate_squares(limit ):

for i in range(limit):
yield i ** 2

(a) It yields values 1-by-1 instead of storing in memory.

(b) It returns an error.

(c) It gets exhausted and returns an empty list.

(d) It will create a list of square numbers up to limit - 1.

5. What is the purpose of this generator?
def infinite_numbers ():

num = 0
while True:

yield num
num += 1

(a) It generates numbers up to a fixed limit.

(b) It produces numbers starting from 0, but stops after a certain point.

(c) It generates an infinite sequence of numbers, one at a time.

(d) It returns numbers in ascending order.
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First-Class Functions

In modern OOP, functions are treated as first-class citizens, meaning they can be
assigned to variables, passed as arguments, and returned from other functions.

def greet(name):
return f"Hello , {name}!"

# Assigning the function to a variable
greeting = greet

# ‘greeting ‘ can now be used like the function ‘greet ‘
print(greeting("Alice")) # Output: Hello , Alice!

In this example, the greet function is assigned to a variable greeting, which
can then be called like a regular function.

def apply(op , a:int , b:int) -> int: return op(a, b)
def add(x:int , y:int) -> int: return x + y
def subtract(x:int , y:int) -> int: return x - y

# Passing functions as arguments
result_add = apply_op(add , 10, 5) # Output: 15
result_subtract = apply_op(subtract , 10, 5) # Output: 5

For this example, apply_op takes another function op as an argument and applies
it to the given arguments. This allows for dynamic behavior based on the function
passed to apply_op.

History Lisp, developed by John McCarthy in the late 1950s, was one of the first
languages to treat functions as first-class citizens. Lisp’s approach to functions was
heavily influenced by lambda calculus, developed by Alonzo Church in the 1930s,
which formalized functions as mathematical expressions. Lisp’s support for first-class
functions allows for powerful programming techniques, such as higher-order functions
(§6.2). Modern programming languages including Python, JavaScript, and Ruby all
treat functions as first-class citizens.

45
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6.1 Anonymous and Lambda Functions

A popular use for first-class functions is to create anonymous or lambda functions,
which are unnamed functions defined on the fly. Lambda functions are useful for
short, simple operations that do not require a full function definition.
# Lambda function to square a number
square = lambda x: x ** 2
print(square (5)) # Output: 25

In the example above, a lambda function is used to define a function that squares
a number. The lambda function is assigned to the variable square and can be
called like a regular function. Lambda functions are often used in conjunction with
higher-order functions like map, filter, and reduce, described in §6.2, to perform
operations on collections of data.

6.2 Higher-Order Functions

In the world of first-class functions, functions that operate on other functions are
called higher-order functions. More specifically, a higher-order function is a function
that takes one or more functions as arguments or returns a function as its result.

def square(x):
return x * x

def cube(x):
return x * x * x

def apply_to_list(func , numbers ):
return [func(number) for number in numbers]

numbers = [1, 2, 3, 4, 5]
print(apply_to_list(square , numbers )) # Output: [1, 4, 9, 16, 25]
print(apply_to_list(cube , numbers )) # Output: [1, 8, 27, 64, 125]

In this example, the higher-order function apply_to_list takes a function and
a list of numbers as inputs and applies the function to each number in the list,
returning a new list with the results.

6.2.1 Popular Higher-Order Functions

Higher-order functions are commonly used in functional programming and are avail-
able in many programming languages. Three popular higher-order functions include:

• map(f, iterable): Applies a function f to each item in an iterable (e.g., list,
tuple) and returns a new iterable with the results.
Example: list(map(square, [1,2,3,4,5])) returns [1, 4, 9, 16, 25].

• filter(f, iterable): Filters elements in an iterable based on a predicate f
(i.e., a function that returns a boolean value).
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Example: list(filter(lambda x: x % 2 == 0, [1,2,3,4,5])) returns [2,
4]. Lambda functions are discussed in the next section (§6.1).

• reduce(f, iterable): Applies a binary function f to the first two items of
an iterable, then to the result and the next item, and so on. It returns a single
value.
Example: reduce(lambda x, y: x + y, [1,2,3,4,5]) returns 15.

Fun Fact While reduce is well-known in functional languages such as Haskell and
Ocaml, the Python community believes that list comprehensions and generator ex-
pressions made the code more readable than reduce. Thus, in Python 3, reduce was
moved to the functools module to emphasize its specialized use case.
For example, compare the following code snippets that calculate the sum of a list of
numbers using reduce and list comprehension:

# Calculate the sum of a list of numbers using reduce
numbers = [1, 2, 3, 4, 5]
total = reduce(lambda x, y: x + y, numbers)
print(total) # Output: 15

# using list comprehension
total = sum(numbers)
print(total) # Output: 15

# using generator expression
total = sum(x for x in numbers)
print(total) # Output: 15

Fun Fact The MapReduce framework, introduced by Google in 2004, was inspired
by map and reduce (“map” distributes work across multiple nodes and the “reduce”
aggregates the results). It revolutionizes large-scale data processing and allows Google
to index the web efficiently. It influences current web technologies such as Apache
Hadoop and Apache Spark.

6.3 Closures

Closures are a higher-order function that returns a function. It is a powerful feature
of first-class functions and allows functions to retain access to variables from their
enclosing scope even after the scope has finished executing.

Fun fact Closures are used extensively in Javascript, introduced in the Netscape
browser in 1995 by Bredan Eich. Javascript supports closures and first-class functions
and enables the development of dynamic and interactive web applications, leading to
its widespread adoption and popularity.
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def make_multiplier(factor ):
def multiplier(x): # a closure

return x * factor
return multiplier # Return the closure

# Create a function that multiplies by 3
times_three = make_multiplier (3)
print(times_three (5)) # Output: 15

# Use with higher -order functions
numbers = [1, 2, 3, 4, 5]
multiplied_numbers = list(map(make_multiplier (2), numbers ))
print(multiplied_numbers) # Output: [2, 4, 6, 8, 10]

Fig. 6.1: Closure example. Note that this example also illustrate curry, a form of closure
(§6.5)

Examples The above example demonstrates a closure where the make_multiplier
function returns the closure inner function multiplier that multiplies a number by a
given factor. The times_three function is created by calling make_multiplier(3),
which returns a function that multiplies by 3. The closure allows the multiplier
function to retain access to the factor variable even after make_multiplier has
finished executing.

def make_averager ():
series = []

def averager(new_value ):
series.append(new_value)
total = sum(series)
return total / len(series)

return averager

avg = make_averager ()
print(avg (10)) # Output: 10.0
print(avg (11)) # Output: 10.5
print(avg (12)) # Output: 11.0
print(avg (13)) # Output: 11.5

In the example above, the make_averager function creates a closure that calcu-
lates the average of a series of numbers. The averager function retains access to the
series list, allowing it to accumulate values and calculate the average over time.

6.4 In-Class Exercise: Functions First

In this exercise you will demonstrate the concepts of higher-order functions, lambda
functions, and closure. Example code are written in Python but you can use Python
or any other language that supports these features.

1. Part 1: Create a higher-order function that applies different operations (addi-
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tion, subtraction, multiplication) to two numbers.

(a) Create a function called operate_on_numbers (operation: function,
a: int, b: int) -> int that takes another function (operation) as
an argument and applies that function to two numbers.

(b) Create multiple simple functions add, subtract, multiply that can be
passed as arguments to operate_on_numbers.

(c) Test the function by applying each operation to two numbers and printing
the results.

print(operate_on_numbers(add , 5, 3)) # Output: 8
print(operate_on_numbers(subtract , 5, 3)) # Output: 2
print(operate_on_numbers(multiply , 5, 3)) # Output: 15

2. Part 2: Modify the code from Part 1 to use lambda functions

(a) Replace add, subtract, and multiply with lambda expressions.

(b) Test the function by applying each operation to two numbers and printing
the results.

(c) Discuss when you would want to use lambda functions? When would you
want to use a name function?

3. Part 3: Using higher-order functions

(a) For each higher-order function map, filter, and reduce, create some code
to apply each to a list of str.

(b) Clearly explain what each function does and print several examples to
demonstrate each function.

(c) reduce also takes a third input called an accumulator. Explain how
reduce works with the accumulator ? e.g., reduce(f,[1,2,3,...,n],acc)
does what?

(d) Create some code to demonstrate the use of the accumulator in reduce.
DO NOT use the example in the lectures (eg.., sum, product, subtract).

4. Part 4: Write a function make_max_tracker() that returns a closure that
tracks and returns the highest number seen so far. In Python, to access a
variable that is not in scope, you might need to use the nonlocal keyword,
e.g., nonlocal var_name.

def make_max_tracker ():
...
def tracker(v):

...

return tracker

max_tracker = make_max_tracker ()
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# Test closer , notice how it "memorizes" what it has seen so far.
print(max_tracker (5)) # Output: 5
print(max_tracker (3)) # Output: 5
print(max_tracker (8)) # Output: 8
print(max_tracker (7)) # Output: 8

6.5 Currying

Currying is a special form of closure. The curried function takes one argument at a
time and returns a new function that takes the next argument. In other words, it
transforms a function of arity n to n functions of arity 1.

The make_multiplier function in Fig. 6.1 is an example of currying. The func-
tion needs 2 arguments, but it is transformed into a series of 2 function calls where
each take 1 argument. For example, make_multiplier(2)(3) is equivalent to 2*3.

History Currying was introduced by Haskell Curry in the 1930s. Currying and
higher-order functions (§6.2) are widely-used in functional programming languages
such as Ocaml and Haskell (named after Haskell Curry).

6.6 Exercise

6.6.1 E1

1. Explain the difference between a higher-order function and a closure. Provide
an example of each.

2. When would you use a lambda function over a regular function? Provide an
example.

3. Write a function make_min_tracker() that returns a closure which tracks and
returns the lowest number seen so far.

def make_min_tracker ():
...
def tracker(v):

...

return tracker

min_tracker = make_min_tracker ()
print(min_tracker (5)) # 5
print(min_tracker (3)) # 3
print(min_tracker (8)) # 3
print(min_tracker (-1)) # -1
print(min_tracker (0)) # -1
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Testing

The terms validation, verification, and testing are commonly used in software de-
velopment for quality assurance. Validation is a process typically achieved by ver-
ification and validation to ensure the program behaves as expected. Verification
ensures that the program works on all possible inputs. Verification provides better
guarantee but is expensive or impossible for large programs.

In contrast, testing checks that the program behaves as expected over some
inputs. Testing only shows the program works on the test inputs, but it is usually
cheaper to do (comparing to verification). Software developers are often more fa-
miliar with testing, e.g., by running the program with various inputs. We focus on
testing in this chapter.

7.1 Black-box Testing

Black-box approach tests the program using its specifications (e.g., type of inputs,
expected outputs) without any knowledge of its internal implementation. In fact,
blackbox testing does not even require the program code (hence the name black-
box). The approach is efficient and easy to use, but can miss certain bugs.
class MathStuff:

def square(self , x:int) -> int:
if x == 123:

return -1 # bug
else:

return x*x

def div(self , x:int , y:int) -> int:
if y == 0:

raise ValueError("Cannot divide by 0")
else:

return x // y

""" Only test on integer inputs and check that the outputs are as expected """
ms = MathStuff ()
assert ms.square (0) == 0

51
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assert ms.square (1) == 1
...
assert ms.square (12) == 144
assert ms.square (-5) == 25

assert ms.div(10, 2) == 5
assert ms.div(10, 3) == 3

try:
ms.div(10, 0)

except ValueError:
# raise an exception is expected
pass

else:
print "Error: Should have raised an exception"

For these functions (square, div) we simply test them with various numbers as
inputs and check that the outputs are as expected. We do not need to know how
the functions (e.g., square) were implemented. Observe that because of this, we do
not know about the special “buggy” case of 123 in square and thus do not test for
it. This is a limitation of blackbox testing.

7.1.1 Unit Testing

Modern OOP languages often have built-in capability or library to help with testing.
Unit testing is a popular and supported by most languages to test individual units
(e.g., functions, classes) of the program. Below is a small example of using Python’s
unittest library to test the MathStuff class (§7.1).

import unittest
class TestCalculator(unittest.TestCase ):

## setup unit tests. This is run before each test
def setUp(self):

self.ms = MathStuff ()

# Basic Unit Tests
def test_square(self):

self.assertEqual(self.ms.square (0), 0)
self.assertEqual(self.ms.square (1), 1)
self.assertEqual(self.ms.square (12), 144)
self.assertEqual(self.ms.square(-5), 25)

def test_div(self):
self.assertEqual(self.ms.div(10, 2), 5)
self.assertEqual(self.ms.div(10, 3), 3)

with self.assertRaises(ValueError ):
self.ms.div(10, 0)

if __name__ == "__main__":
unittest.main()
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7.1.2 Special/Edge Cases Testing

This testing runs the program on special or edge cases to find bugs that are not
caught by regular inputs.

For example, a program like MathStuff.square in §7.1.1 should be tested with
negative numbers, zero, and positive numbers. Similarly, for a program that takes a
list of numbers as input, special cases could include an empty list, with one element,
with all 0’s, with all negative numbers, etc.

7.1.3 Fuzz Testing

This testing generates random and invalid inputs to test the program. For example,
a program expects a number is tested with a string or a dict. It has the similar
purpose as special cases testing (§7.1.2), but instead of using specific valid inputs, it
generates many random and invalid inputs. Fuzz testing is often used to find security
vulnerabilities. Many advanced fuzzing techniques generate new inputs from existing
or seed inputs, e.g., by flipping bits or changing values slightly.
#generate 100 random numbers
for i in range (100):

x = random.randint (-1000, 1000)
assert square(x) == x*x

#invalid inputs
for x in [["hello", [1,2,3], {"a":1}]]:

try:
square(x)
assert False , "Should have raised an exception"

except:
# raise an exception is expected
pass

#generate inputs from existing ones
for x in [1,2,3]:

x2 = x + random.randint (-10, 10)
assert square(x) == square(x2)

7.1.4 Combinatorial Testing

This technique combines different inputs to generate tests. The combination is typ-
ically done using Cartesian products, i.e., all possible combinations of inputs are
tested. Combinatorial testing is useful for finding issues that occur when combining
different inputs. For example, a program that takes two numbers as input could be
tested with all combinations of positive, negative, and 0 numbers.

from parameterized import parameterized
...

xs = [11, 12, -11, -12, 0]
ys = [1, 2, -1, -2, 0]

@parameterized.expand(product(xs, ys))
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def test_div(self , x, y):
if y == 0:

with self.assertRaises(ValueError ):
self.ms.div(x, y)

else:
expect = x // y
self.assertEqual(self.ms.div(x, y), expect)

For the example above, the test_div function is run with all combinations num-
bers in xs and ys. The product function generates all 25 combinations of the num-
bers in the lists xs, ys (Cartesian product). The @parameterized.expand runs the
test with each input. Note that while this is illustrated using Python, the concept
of combinatorial testing is used in other languages and testing frameworks.

7.1.5 Property-Based Testing

Property-based testing generates random inputs to check specific properties of the
program. For example, square of a negative number is positive and addition and
multiplication being commutative (e.g., x+ y ≡ y + x). Property-based testing is a
convenient way to generate and test desirable behaviors with many inputs.

Assertions Property-based tests often use assertions to check the properties. Most
languages have the function assert(c) or similar that raises an exception if the con-
dition c is false.

from hypothesis import given
from hypothesis.strategies import integers

@given(integers(), integers ()) # create random integers
def test_square(x, y):

assert square(x) == x*x
assert square(y) == y*y
assert square(x) == square(-x) # square of neg is positive

@given(integers(), integers ()) # create random integers
def test_add(x, y):

assert add(x, y) == add(y, x) # commutative

This example tests various properties of square and add with randomly generated
integers x, y. In Python, you can use the hypothesis library, which generates
random inputs and runs the tests with them. In Java, you can use the jqwik library
for property-based testing.

7.2 In-class Exercise: GCD

You are given two implementations computing the GCD (Greatest Common Divisor)
of two numbers. One of them is correct and the other has a bug. You will write
combinatorial and property tests to find the bug. Recall that the GCD of two
numbers is the largest number that divides both of them. For example, gcd(8,12)=4.
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def gcd_correct(a, b):
while b != 0:

a, b = b, a % b
return abs(a)

def gcd_buggy(a, b):
while b != 0:

a, b = b, a % b
return a

Part 1: Using Combinatorial Testing to Find Bugs

• Write code to perform combinatorial testing on gcd_correct and gcd_buggy.
In Python, these would be done by importing the parameterized module
(§7.1.4)

• Create tests with several positive, negative, and zero numbers.

• Run the tests and show the bug in gcd_buggy.

• Explain how combinatorial testing helped find the bug.

Part 2: Using Property Testing to Find Bugs

• Identify several properties of GCD (use Wikipedia if you have to). One of
these properties should help you detect the bug in gcd_buggy.

• Write code to perform property-based testing on gcd_correct and gcd_buggy.
In Python, these would be done by importing the hypothesis module (§7.1.5)

• Run the tests and show the bug in gcd_buggy.

• Explain how property-based testing helped find the bug.

7.2.1 Search-Based Software Testing (SBST)

SBST searches for inputs to optimize some objective. Examples include maximizing
code coverage, causing a crash, or satisfying a specific property.

7.2.2 Genetic Algorithm

Genetic Algorithm (GA) is an SBST technique that uses biological evolution (Dar-
win’s theory of evolution) to generate test inputs. GA starts with an initial set or
population of random inputs (individuals) and iteratively evolves them to find the
best one that achieves some objective. GA uses a fitness function to evaluate the
quality of the individuals and selects the best ones to survive and reproduce (i.e.,
survival of the fittest). GA then applies genetic operators to create individuals rep-
resenting the new population in the next generation. This process continues until a
stopping criterion is met.

The main genetic operators in a GA are
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1. Crossover (xover): combines two individuals or parents to create new ones.
Common xover methods include single-point, two-point, and uniform crossover.
xover rate is the probability of applying xover, and typically is high (e.g., 0.8
or 80% chance).

2. Mutation: randomly changes some elements of an individual. Common muta-
tion methods include creating a random element, swapping two element, and
flipping (e.g., negative to positive, 0 to 1, etc). Mutation rate is the probability
of doing mutation, and typically is low (e.g., lower than 0.1 or 10% chance).

GA Tempalte The following is a template for GA:

def ga (...):
# Initialize the population
pop = gen_pop (...) # generate a random population

# Evaluate the fitness of each individual
fitness = eval_fitness (...)

# Repeat until stopping criterion is met
while not stopping_criterion (...):

# Select the best individuals
parents = select (...)

# Apply genetic operators to create new individuals
offspring = crossover (...)
offspring = mutate (...)

# Replace the old population with the new one
pop = offspring

# Evaluate the fitness of the new population
fitness = eval_fitness (...)

# Return the best individual
best = select_best (...)
return best

7.3 In-class Exercise: GA list sum

In this assignment you have two tasks. First, you will implement a GA that evolves
a population of lists of integers to find a list whose sum is a given target sum. Next,
you will write a short report that explains your GA and how you tested it.

Task 1: GA implementation You can use the GA template in §7.2.2 for this
task. You can also use the following GA code for counting 0’s as example. You will
likely need to modify this code to fit your needs as the problem and objective are
very different.

Specifically, you will implement the following GA components. The signatures
below for the functions are just suggestions. You can modify them as needed.

https://nguyenthanhvuh.github.io/class-oo/ga-example.py
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1. Generate an initial, random population of lists of integers. The length of the
popular and individual lists are given as input. The integers in the list should
be between a specified range (e.g., -100,100)
gen_pop(pop_size:int, indv_size:int, min_val:int, max_val:int) -> list[list[int]]

2. Write a fitness function that computes the fitness score based on how close the
sum of the list is to the target sum. Closer is better (e.g., if the target is 99,
then a list whose sum is 99 should have the “perfect score” while a list whose
sum is 90 has a better score than a list whose sum is 50). Note that you must
also take account of negative numbers and sums.
get_fitness(indiv:list[int], target_sum:int)

3. Write a selection function that selects the best individuals based on their fit-
ness scores. You can use any selection method you like (e.g., roulette wheel,
tournament selection). You should look these up to understand how they work.
select(pop:list[list[int]], fitness:list[int], pop_size:int) -> list[list[int]]

4. Write a crossover function that takes two parents and creates two offsprings
using single-point crossover (i.e., pick a random point and swap).
def crossover(parent1: list[int], parent2: list[int], rate:float)
-> tuple(list[int], list[int])

5. Write a mutation function that randomly changes a few elements of an indi-
vidual based on a mutation rate.
def mutate(indiv:list[int], rate:float, min_val:int, max_val:int) ->
list[int]

6. Write a stopping criterion function that stops the GA when it found an indi-
vidual whose sum is the target number.
def stopping_criterion(best_fitness) -> bool

7. Write the main genetic algorithm that uses all the above functions and returns
the best individual and its fitness.
def ga(pop_size:int, indv_size:int, xover_rate:float, mut_rate:float,
min_val:int, max_val:int, target:int): -> (list[int], float)

8. Your GA should print out the best individual, its sum, and its fitness score at
each generation (iteration).

9. Your GA has the various parameters (e.g., inputs to the ga). You should
play with them to find values that work best. You can start with these values:
pop_size=100, indv_size=10, xover_rate=0.8, mut_rate=0.1, min_val=-100,
max_val=100, target=1000.

10. Time your GA. You can use Python’s time module for this.
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11. Submit your code with a clear README instruction on how to run your GA and
test it. You should also submit screenshots of your GA running (you don’t
need to show all the generations, just a few to show that it is working).

Task 2: Write and submit a short report

1. Write a report explaining your GA. More specifically for each of the above
task, explain that you did (e.g., how do you generate the population, how do
you compute the fitness, etc).

2. Explain the parameters you used and how they affect the performance of the
GA (e.g., the time it took). For example, how does the population size affect
the performance? crossover and mutation rates? etc.

7.4 Whitebox Testing with Symbolic Execution

In contrast to black-box testing (§7.1) that does not look at the code, white-box
testing reasons about the program using its source code, allowing it to find bugs
that escape black-box testing. For example, in the square function in §7.1, by
analyzing the code we can see that the program has a bug on input 123 because it
returns −1 instead of 1232.

Symbolic execution is a white-box testing technique to find inputs causing the
program to take some interesting paths (e.g., that result in a bug). Symbolic execu-
tion runs the program with symbolic inputs instead of concrete ones (e.g., x instead
of 5) and tracks program’s state. It uses constraints or logical formulae to represent
the program’s path conditions (PCs) reaching the interesting paths. It then uses a
constraint solver, e.g., a SAT or SMT solver, to find the concrete input that satisfies
the path condition.

void foo(int a, int b, int c){
// l0
int x=0, y=0, z=0;
// l1
if(a) {

x = -2;
// l2

}
// l3
if (b < 5) {

// l4
if (!a && c) {

y = 1;
// l5

}
z = 2;
// l6

}
// l7



CHAPTER 7. TESTING 59

Tab. 7.1: Symbolic Execution Example

Loc (l) Path Condition (PC) Program State (PS)

l0 T {}
l1 T {x 7→ 0, y 7→ 0, z 7→ 0}
l2 a {x 7→ −2, y 7→ 0, z 7→ 0}

l3 a {x 7→ −2, y 7→ 0, z 7→ 0}
l3 ¬a {x 7→ 0, y 7→ 0, z 7→ 0}

l4 a ∧ b < 5 {x 7→ −2, y 7→ 0, z 7→ 0}
l4 ¬a ∧ b < 5 {x 7→ 0, y 7→ 0, z 7→ 0}

l5 a ∧ b < 5 ∧ ¬a ∧ c {x 7→ −2, y 7→ 1, z 7→ 0}
l5 ¬a ∧ b < 5 ∧ ¬a ∧ c {x 7→ 0, y 7→ 1, z 7→ 0}

l6 a ∧ b < 5 ∧ ¬a ∧ c {x 7→ −2, y 7→ 1, z 7→ 2}
l6 a ∧ b < 5 ∧ (a ∨ ¬c) {x 7→ −2, y 7→ 0, z 7→ 2}
l6 ¬a ∧ b < 5 ∧ ¬a ∧ c {x 7→ 0, y 7→ 1, z 7→ 2}
l6 ¬a ∧ b < 5 ∧ (a ∨ ¬c) {x 7→ 0, y 7→ 0, z 7→ 2}

l7 a ∧ b < 5 ∧ ¬a ∧ c {x 7→ −2, y 7→ 1, z 7→ 2}
l7 a ∧ b < 5 ∧ (a ∨ ¬c) {x 7→ −2, y 7→ 0, z 7→ 2}
l7 ¬a ∧ b < 5 ∧ ¬a ∧ c {x 7→ 0, y 7→ 1, z 7→ 2}
l7 ¬a ∧ b < 5 ∧ (a ∨ ¬c) {x 7→ 0, y 7→ 0, z 7→ 2}
l7 a ∧ b ≥ 5 {x 7→ −2, y 7→ 0, z 7→ 0}
l7 ¬a ∧ b ≥ 5 {x 7→ 0, y 7→ 0, z 7→ 0}

assert(x + y + z != 3);
}

Example We execute this program with symbolic inputs a, b, c. At each location
l, we keep track of two things: the path condition (PC) to reach l and the program
state (PS), consisting values of variables at l.

At l0, the PC is always true (i.e., T ) and the PS is {}, i.e., nothing yet. At
l1, PC is T and PS is {x 7→ 0, y 7→ 0, z 7→ 0}. The PC for l2 is a with PS
{x 7→ −2, y 7→ 0, z 7→ 0}.

At l3 we have two paths reaching it. The PC for the first path is a with PS {x 7→
−2, y 7→ 0, z 7→ 0}. The PC for the second path is ¬a with PS {x 7→ 0, y 7→ 0, z 7→ 0}.
At l4 we have two paths: 1st path has PC a∧b < 5 with PS {x 7→ −2, y 7→ 0, z 7→ 0},
and 2nd path has PC ¬a ∧ b < 5 with PS {x 7→ 0, y 7→ 0, z 7→ 0}. At l5 we have 2
paths, at l6 we have 4 paths, and so on as shown in Tab. 7.1
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Constraint Solving After obtaining the PCs, we can use a constraint solver like
Microsoft Z3 solver to find the concrete inputs reaching to a specific location by
solving the corresponding PC. For example, a solution to the PC a ∧ b < 5 of l4 is
a = 1, b = 3, which means the program reaches l4 with a = 1, b = 3.

Assertions Assertions indicate what the programmer believes to be true at a cer-
tain point in the program. If an assertion fails, it indicates a bug in the program.
For example, the assertion in this example would fail when we have x+ y + z = 3.

To make the reasoning easier, we can convert the statement assert(c) to
if(!c){

// failure loc
assert (0);

}

This allows us to use symbolic execution as usual compute the PC to reach the
failure location.

None-Symbolic Values Observe our assertion here involves the non-symbolic
values x, y, z, which we keep track in the program state. It is common in symbolic
execution where we have to reason both symbolic and non-symbolic values (hence
we keep track of both PC and PS).

Thus we essentially want to check if any of the paths can reach the assertion
location has x+ y + z = 3. In this example, according to Tab. 7.1, we see that the
path reaching l7 with PC ¬a ∧ b < 5 ∧ (¬a ∧ c) with PS {x 7→ 0, y 7→ 1, z 7→ 2}
would satisfy x + y + z = 3. Using a constraint solver, we can find the a concrete
input (a = 0, b = 3, c = 1) that would reach this path and fail the assertion.

7.5 Fault Localization

Fault localization is a debugging process of isolating the bug in the program. It
is crucial for developers to understand and fix the bug. Programmers use various
techniques, including printf debugging where they output variable values to analyze
the bug. Professional developers use built-in debugger tools in IDEs to step through
and pause code execution to inspect variables and program states.

Here we will discuss two popular fault localization techniques: statistical debug-
ging and delta debugging to localize code and inputs that likely contain the bug.

7.5.1 Statistical Debugging

Statistical debugging is a white-box technique that uses statistics to find bugs in
code, i.e., fault localization. It collects program execution traces, e.g., which lines of
code were executed, how many times, etc, and uses this data to find the lines that
likely contain the bug. For example, if a line l is executed many times when the
program fails but not when it runs correctly, then l is likely the bug.
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Tarantula is a popular statistical debugging technique that computes a suspicious
score for each line of code based on the number of times it was executed when the
program failed and when it passes (gives expected behavior). The formula is:

Suspiciousness(l) =
Failed(l)/TotalFailed

Failed(l)/TotalFailed + Passed(l)/TotalPassed
,

where Failed(l) is the number of times line l was executed when the program failed,
Passed(l) is the number of times line l was executed.

Consider the following code:
def median(x, y, z):

print("input ", x, y, z) # line 1
m = z # line 2
if y < z: # line 3

if x < y: # line 4
m = y # line 5

else if x < z: # line 6
m = y # line 7, %bug , should be z

else: # line 8
if x > y: # line 9

m = z # line 10, %bug , should be y
else if (x > z): # line 11

m = x # line 12
print("median is ", m) # line 13

We now run the program on tests and collect the number of times each line was
executed when the program failed and when it passed. For example, for a test t1
with input (3,3,5), the program passes (shows median is 3) and hits lines 1, 2, 3,
4, 6, 7, 13 and skips lines 5, 8, 9, 10, 11, 12. For a test t9 with input (5,4,2), the
program fails (shows median is 2 instead of 4) and hits lines 1, 2, 3, 8, 9, 10, 13 and
skips lines 4, 5, 6, 7, 11, 12. It is easy to see that every test will hit lines 1 and 13.

After we do this for all tests (e.g., 10 tests t1, t2, ..., t10), we can compute
the suspiciousness score for each line using the Tarantula formula. The higher the
score, the more likely the line contains the bug. The following table shows the
number of times each line was executed when the program failed and when it ran
correctly over several test runs.

We can now compute the suspiciousness score for each line using the Tarantula
formula. Here we have 10 tests with 6 passing and 4 failing. For example, the
suspiciousness score for line 4 is: 2/4/(2/4 + 4/6) = 0.42. The score for line 5 is
0/4/(0/4 + 1/6) = 0, i.e., this line is definitely not buggy. The score for line 7 is
2/4/(2/4 + 2/6) = 0.6, line 10 is 2/4/(2/4 + 1/6) = 0.75. Note that scores for lines
1 and line 13, which are always executed, are 4/4/(4/4 + 6/6) = 0.5. The score for
line 12, which was not executed in any test runs, is 0. (if it never runs, it should not
be responsible for any issue).
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Tab. 7.2: Statistical Debugging with Tarantula scoring metrics. ‘x‘ means the line was hit
(executed) and ‘-‘ means it was skipped (not executed).

line 1 2 3 4 5 6 7 8 9 10 11 12 13 Pass/Fail

t1 (3,3,5) x x x x - x x - - - - - x P
t2 (1,2,3) x x x x x - - - - - - - x P
t3 (3,2,2) x x x - - - - x x x - - x P
t4 (5,5,5) x x x - - - - x x - x - x P
t5 (1,1,4) x x x x - x x - - - - - x P
t6 (5,3,4) x x x x - x - - - - - - x P
t7 (3,2,1) x x x - - - - x x x - - x F
t8 (2,1,3) x x x x - x x - - - - - x F
t9 (5,4,2) x x x - - - - x x x - - x F
t10 (5,2,6) x x x x - x x - - - - - x F

Score (Tara) 0.5 0.5 0.5 0.42 0. 0.5 0.6 0.6 0.6 0.75 0. 0. 0.5

7.5.2 In-class Exercise: Tarantula vs. Ochiai

Ochiai is another popular metrics for statistical debugging. Its formula is

Suspiciousness(l) =
Failed(l)/TotalFailed√

Failed(l)/TotalFailed + Passed(l)/TotalPassed

1. Compute the Ochiai score for the lines in the table above.

2. Explain the differences between Tarantula and Ochiai scores. Which one do
you think is better? Why?

7.5.3 Delta Debugging (DD)

While statistical debugging (§7.5.1) aims to localize faults in the code, DD focuses
on finding the smallest input that triggers the issue. DD aims to minimize a failing
input (e.g., causing the program to crash or producing some interesting behavior).
It is useful for debugging and finding a simpler input that is still interesting. DD
works by repeatedly splitting the input into smaller parts and checking if they still
trigger the issue. When using DD, you will need to provide an oracle that checks if
the input P is interesting (e.g., causing a crash).

Example 1 Oracle: program fails (is interesting) whenever input contains an as-
terisk (*).

Tab. 7.3 shows the steps of DD. First, we start with the original input abcdef*h
and split it into two parts abcd/ef*h. Removing the first part abcd still fails, so we
remove it. We then repeat DD on the new input ef*h and split it into two parts
ef/*h. Removing ef still fails, so we remove it and have the new input *h, which is
then split into */h. Removing the first part * passes, so we keep it and remove the
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Tab. 7.3: Delta Debugging Example 1.

Remove
Failing Input Split 1st 2nd

abcdef*h abcd/ef*h abcd: F -
ef*h ef/*h ef: F -
*h */h *: P h: F
* - - -

Tab. 7.4: Delta Debugging Example 2.

Remove
Failing Input Split 1st 2nd

*abcdef* *abc / def* *abc: P def*: P
*abcdef* *a / bc / de / f* *a: P bc: F
*adef* *ad / ef* *a: P ef*: P
*adef* *a / de / f / * *a: P de: F
*af* *a / f* *a: P f*: P
*af* * / a / f / * *: P a: F
*f* *f / * *f: P *: P
*f* * / f / * *: P f: F
** * / * *: P *: P
** - - -

second part h, which fails and is removed. The new input is now *, which cannot be
split further and is the smallest failing input.

This example does not show the case when the split results in all parts passing.
In that case, DD would increase the split size (e.g., split into 4 parts instead of 2)
and repeat the process.

Example 2 Oracle: program fails whenever input contains two asterisks (**).
Tab. 7.4 shows the steps. We first split the input *abcdef* into 2 parts, which

both pass. Thus, we increase the granularity and split the input into 4 parts *a, bc,
de, f*. Removing the 1st part result in a pass and so we keep it and try removing
the 2nd part bc, which fails and thus we can remove bc to get the new input *adef*.
This keeps going until we find the smallest failing input **. Note even when our
failing input is **, we still continue applying DD to it as we did not know that it
would be the smallest failing input.

7.5.4 In-class Exercise: Delta Debugging

• Apply DD to the input string "*hello*world*" to find the smallest failing
input. The oracle is that the input fails whenever it contains "oo".



CHAPTER 7. TESTING 64

• What is best-case complexity of DD? Give an example of an input that would
take the most steps to find the smallest failing input.

• What is the worst-case complexity of DD? Give an example of an input that
would take the most steps to find the smallest failing input.

7.6 Exercises

7.6.1 Statistical Debugging: M Metrics

The M metrics to compute the suspiciousness of a line l is calculated as follows:

Suspiciousness(l) =
Failed(l)

Failed(l) + Passed(l)

Apply this metrics to compute the suspiciousness scores for the lines in Tab. 7.2.

7.6.2 Delta Debugging (DD) Implementation

In this exercise you will implement the DD technique. Your DD will take an input
string and an oracle that decides if the input is interesting (e.g., has a bug) or not.
More specifically, oracle(s:str)->bool takes in a string s and returns T (s has a
bug) or F (s has no bug). The goal of your DD is to reduce the original input to
become minimal but is still interesting (i.e., a minimal input that still has the bug).

• You can be as creative as you want with your DD, however it must not run for
too long (e.g., try to split the input in to parts that are power of 2 as discussed
in class to reduce the input).

• You must provide two examples (inputs) to demonstrate your DD: 1 example
where the DD takes a reasonably short time (few iterations) and 1 example
where the DD takes a long time (e.g., 50 or more iterations).

• At each iteration, your DD should output the current input, its size, and
whether it is interesting or not. You can also output the split number and
parts, etc (the same way we did in class).

• Code submission: submit your DD code along with the examples you pro-
vided with a clear instructions and screenshots on how to run your DD and
expected output.

• Short Report: write a short report describing your DD implementation.
Explain how it works, how you tested it, and the results. Also briefly explain
the examples you provided and why some take longer than others.
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7.6.3 Hello SWE419

• Assume you’re given a simple hello SWE419 program in C
#include <stdio.h>
int main() {

printf("Hello SWE419 !\n");
return 0;

}

and an oracle that checks if the input C program is valid (compiles) and con-
tains the word SWE419. If so, the oracle returns 0 (Fail) and 1 otherwise (Pass).

• Describe in words how you would apply DD to obtain the minimal C program
that fails the oracle.

– Show what you get at the end. That is, show the minimal C code that
DD would return.

– You do not need to show step by step like we did in class. Instead,
just describe the steps you (the DD algorithm) would take to reduce the
input, e.g., “in the first step you split the program into two parts, then you
remove the first part, run the oracle which fails/passes because ..., etc”.

– Pay attention to the additional requirement of being a valid C program
(e.g., needs the #include <stdio.h>, int main()... and return 0
statements).

7.6.4 Symbolic Execution

Consider a simple function f below
void f(int y) {

int z = y * 2;
if (z == 12) {

// L
fail ();

} else {
printf(‘‘OK’’);

}
}

Use symbolic execution to compute the path condition (PC) and program state
(PS) at location L (where the program fails). Then give an input that causes the
program to fail at L.
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Concurrency

8.1 Processes

A process is an independent instance of a program and does not share memory
and data with other processes. While incurring higher overhead, processes do not
have synchronization issues such as race conditions and makes parallelism safer. In
a multicore system, processes would achieve true parallelism as they can run on
different cores.

In Python we use multiprocessing to create and manage processes. The fol-
lowing demonstrates using multiprocessing.Processes to run two functions in
parallel. It also uses multiprocessing.Queue to simulate a shared variable.

from multiprocessing import Process , Queue
import time

def square(numbers:list , queue:Queue):
ct = 0
for n in numbers:

time.sleep (1)
print(f"Square of {n}: {n*n}")
ct += 1

queue.put(ct)

def cube(numbers:list , queue: Queue):
ct = 0
for n in numbers:

time.sleep (1)
print(f"Cube of {n}: {n*n*n}")
ct += 1

queue.put(ct)

if __name__ == "__main__":
numbers = [2, 3, 4, 5]

Tab. 8.1: Threads vs. Processes

Threads Processes

Memory Sharing memory Not sharing memory
Communication Easier, since sharing memory Harder, because running in isolation
Concurrency Type Interleaved Parallel
Overhead Lightweight Heavyweight
Use For lightweight tasks For heavy, isolated tasks

66
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queue = Queue ()
# Create processes
process1 = Process(

target=square ,args=(numbers ,queue))
process2 = Process(

target=cube ,args=(numbers ,queue))

# Run processes (in parallel)
process1.start (); process2.start()

# Wait for both processes to finish
process1.join (); process2.join()

# Combine the counts from both processes
total_ct = 0
while not queue.empty ():

total_ct += queue.get()

print("Count : ", total_ct)

8.2 Threading

A thread runs within a process and shares memory and data as other threads in the
process. Thus threads are lightweight with low overhead, but can face synchroniza-
tion issues like race conditions when multiple threads access shared data.

In Python we use the threading module to create and manage threads. The
following demonstrates the use of threading.Thread to run tasks in parallel.

This example also uses threading.lock for mutual exclusion to ensure only one
thread can access and modify the shared variable at a time.

from threading import Thread , Lock
import time

shared_ct = 0
lock = Lock()

def square(numbers ):
global shared_ct
for n in numbers:

time.sleep (1)
print(f"Square of {n}: {n*n}")
lock.acquire ()
# critical section
shared_ct += 1
lock.release ()

def cube(numbers ):
global shared_ct
for n in numbers:

time.sleep (1)
print(f"Cube of {n}: {n*n*n}")

# locking the Python way
with lock:

shared_ct += 1

if __name__ == "__main__":
st = time.time()
numbers = [2, 3, 4, 5]

# Create threads
thread1 = Thread(target=square ,

args=(numbers ,))
thread2 = Thread(target=cube ,

args=(numbers ,))

# Start the threads
thread1.start (); thread2.start()

# Wait for both threads to complete
thread1.join (); thread2.join()

print("Count : ", shared_ct)
print(time.time() - st)

8.2.1 Join

The join() method, which appears in Python, Java, and many other languages, is
used to wait for a thread to complete. Calling t.join() blocks the parent (calling)
thread until the thread t is terminated.

The example above uses thread1.join() and thread2.join() to wait for both
threads to complete before printing the final count. If we do not use join(), the
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calling thread may print the count before the threads are done, leading to incorrect
count.

8.2.2 Daemon Threads

When a program create (regular) threads, the program will wait for them to complete
before exiting. (Note not to be confused with join() which blocks the calling thread
until the target thread completes). However, if we want the program to exit even if
the threads are not finished, we can use daemon threads. This type of threads run
in the background and do not block the program from exiting. Instead, when the
program exits, daemon threads are automatically terminated or killed.

from threading import Thread
import time

def daemon_task ():
while True: #long running

print("Daemon thread running")
time.sleep (1)

def regular_task ():
for i in range (10):

print(f"Regular thread running: {i}")
time.sleep (1)

if __name__ == "__main__":
# a daemon thread
daemon_t = Thread(target=daemon_task)
daemon_t.daemon = True # Set as daemon
daemon_t.start()

# a regular thread
regular_t = Thread(target=regular_task)
regular_t.start()
regular_t.join()

print("Done.")

This example demonstrates the difference between daemon and non-daemon (reg-
ular) threads. The program will wait for the regular thread to finish (i.e., print 0 to
4) before printing "Done". However, the daemon thread will run indefinitely in the
background but will be terminated immediately the program exits.

8.3 Locks, Semaphores, and Monitors

Locks, semaphores, and monitors are key synchronization concepts in multithread-
ing. They help manage shared resources and prevent synchronization issues such as
race conditions and deadlocks.

8.3.1 Locks

A race condition occurs when two or more threads try to change a shared resource at
the same time, leading to unpredictable results (e.g., consider a shared counter and
two threads incrementing it at the same time like the example in §8.2). Locking the
shared resource is a simple mechanism to avoid race condition. It works by allowing
a thread t to acquire the lock and proceed if the lock is available; otherwise, t waits
until the lock is released. After t is done, it releases the lock. The code that needs
to be protected (between lock acquire and release) is called a critical section. The
example in §8.2 uses a lock to protect the critical section modifying shared_ct.
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Thus, locks are ideal when only one thread should access a shared resource at
a time. Because of this limitation, locks are efficient and simple to use. However,
improper use of locks can lead to deadlocks and live locks describe below.

Deadlock

Deadlock occurs when two threads are stuck waiting for each other to release a lock.
This happens when a thread acquires a lock and waits for another lock, while another
thread acquires the second lock and waits for the first lock.

from threading import Thread , Lock
import time

lock1 = Lock (); lock2 = Lock()

def t1_job ():
print("T1: Want Lock 1...")
with lock1:

print("T1: Got Lock 1.")
time.sleep (1)
print("T1: Want Lock 2...")
with lock2:

print("T 1: Got Lock 2.")

def t2_job ():

print("T2: Want Lock 2...")
with lock2:

print("T2: Got Lock 2.")
time.sleep (1) # Simulate some work

print("T2: Want Lock 1...")
with lock1:

print("T 2: Got Lock 1.")

if __name__ == "__main__":
t1 = Thread(target=t1_job)
t2 = Thread(target=t2_job)
t1.start (); t2.start()
t1.join (); t2.join()
print("Done.")

This example demonstrates a deadlock. Thread 1 acquires lock 1 and waits for
lock 2, while thread 2 acquires lock 2 and waits for lock 1. This leads to a deadlock
because both threads are stuck waiting for each other to release the lock.

Live Lock

In live lock, threads are not blocked but cannot make progress. In constrast to a
deadlock, which each thread is greedy and does not release the lock, a live lock occurs
when threads are too polite and keep releasing the lock. Imagine two pedestrians
trying to pass each other in a narrow corridor. If both keep stepping aside to let the
other pass, they will keep stepping aside and never pass each other.

from threading import Thread , Lock
import time

lock1 = Lock (); lock2 = Lock()

def t1_job ():
while True:

print("T1: Want Lock 1...")
with lock1:

print("T1: Got Lock 1.")
time.sleep (1)
print("T1: Want Lock 2...")
if not lock2.acquire(timeout =1):

print("T1: Released Lock 1.")
continue # release lock 1 and try again

print("T1: Got Lock 2.")
break # got both lock

def t2_job ():
while True:

print("T2: Want Lock 2...")
with lock2:

print("T2: Got Lock 2.")
time.sleep (1) # Simulate some work
print("T2: Want Lock 1...")
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if not lock1.acquire(timeout =1):
print("T2: Released Lock 2.")
continue # release lock 2 and try again

print("T2: Got Lock 1.")
break # got both lock

if __name__ == "__main__":
t1 = Thread(target=t1_job)
t2 = Thread(target=t2_job)
t1.start (); t2.start()
t1.join (); t2.join()
print("Done.")

This example demonstrates live lock. Similar to the deadlock example above,
both threads want to get both locks. However, here if a thread cannot acquire a
lock, it releases the lock it’s holding and tries again. This leads to a live lock where
both threads keep releasing the lock and trying again, but neither can get both locks
to make progress.

Starvation

This occurs when a thread t cannot access a shared resource r because other threads
are continuously accessing it. This can happen when t has lower priority or much
faster than other threads. This is different than deadlock and live lock as other
(non-starving) threads are still making progress.

8.3.2 Semaphores

Semaphores are more flexible than locks as they allow multiple threads to simu-
lateously access a shared resource. Semaphores maintain a counter to track the
number of threads that can access the resource. When a thread t wants to access
a resource r, it checks the counter n. If n > 0, t decrements n and proceeds to
acquire r. If n = 0, t waits until n is incremented. When t is done, it increments n
to indicate that it releases r. Note that when n > 1, we have a counting semaphore,
and when n = 1, we have a binary semaphore, which behaves like a lock.

Semaphores are thus useful when multiple threads need to access a shared re-
source. However, they too can lead to deadlocks when threads are waiting for each
other to release a semaphore.

In Python, we use Semaphore in threading for semaphores. For the example in
§8.2, we can replace lock = Lock() with a binary semaphore: sem = Semaphore(1).
Observe that the semaphore is initialized with 1 to behave like a lock and ensure
proper mutual exclusion. If we initialized with 2 then race condition could occur as
both threads can access and modify shared_ct simultaneously.

8.3.3 Monitors

This synchronization mechanism combines lock with communication capability. It
allows threads to wait for a condition to be true and notify other threads when the
condition changes. Java implements monitors natively. Python however does not
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import threading
import time
import random

queue = []
lock = threading.Lock()
class ProducerThread(threading.Thread ):

def run(self):
global queue
while True:

num = random.choice(range (10))
lock.acquire ()
queue.append(num)
print("Produced", num)
lock.release ()
time.sleep(random.random ())

class ConsumerThread(threading.Thread ):
def run(self):

global queue
while True:

lock.acquire ()
if not queue:

print("Nothing in queue , "
"consumer fails")

num = queue.pop(0)
print("Consumed", num)
lock.release ()
time.sleep(random.random ())

if __name__ == "__main__":
# start the threads
ProducerThread (). start()
ConsumerThread (). start()

Fig. 8.1: Producer-Consumer Problem using Lock (has issue)

have built-in monitors, but we can use threading.Condition to simulate monitors
as follows.

As shown in Fig. 8.1 the classical “producer-consumer” problem has an issue
with the consumer trying to consume from an empty buffer using a lock. This can
be solved using a monitor (lock = threading.Condition()), as shown in Fig. 8.2,
which ensures that the consumer stops consuming and waits when the buf is empty,
and producer notifies consumer when it adds an item to the buf.

History The concept of semaphore was due to Edsger Dijkstra in the early 60s
when he was working on the THE multiprogramming system. The name “semaphore”
might have been inspired by the railway signals that control the traffic of trains.

8.4 Exercises

8.4.1 Benefits of Threads and Processes over Sequential Execution

This assignment introduces you to threads and processes and their benefits over
sequential execution. Assuming you have a long-running task (e.g., a function that
sleeps for 1 second) as follows:
def do_something(n):

time.sleep (1) # Simulate a long -running task
print(f"Processed {n}")

Now create 3 methods to process a list of numbers (e.g., [1, 2, 3, 4, 5]) by
invoking do_something for each number.

1. A regular approach that processes each number sequentially.
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import threading
import time
import random

queue = []
lock = threading.Condition ()
class ProducerThread(threading.Thread ):

def run(self):
global queue
while True:

num = random.choice(range (10))
lock.acquire ()
queue.append(num)
print("Produced", num)
lock.notify ()
lock.release ()
time.sleep(random.random ())

class ConsumerThread(threading.Thread ):
def run(self):

global queue
while True:

lock.acquire ()
if not queue:

print("Nothing in queue , "
"consumer waits (instead of fail)")

lock.wait()
print("Producer added to queue ,"

"consumer continues")
num = queue.pop(0)
print("Consumed", num)
lock.release ()
time.sleep(random.random ())

if __name__ == "__main__":
# start the threads
ProducerThread (). start()
ConsumerThread (). start()

Fig. 8.2: Producer-Consumer Problem using Monitors (fix issue)

2. A multithreaded approach using the threading module, i.e., create a thread
for every do_something call.

3. A multiprocessing approach using the multiprocessing module, i.e., create a
process for every do_something call.

Time each method and compare them. You should see that the multithread and
multiprocess versions run a lot faster than the regular one. Note that in this exercise
there is no shared resource so you do not need to worry about race conditions or
having to use locks.

8.4.2 Threads and Processes: Election Simulation

We will simulate the election process with threads and processes. We have multi-
ple voters (threads) casting their votes for candidates, and election officials (pro-
cesses) tallying the votes. We will use locks to manage access to the vote count and
semaphores to limit the number of people that can vote simultaneously.

More specifically, we will implement the following:

1. Election class: manage the voting and maintain the vote count:

• var votes:dict: store the vote count for each candidate (e.g., votes =
{‘Alice’: 1, ‘Bob’: 2, ‘Charlie’: 5}).

• var lock:threading.Lock: protect access to the vote count

• method cast(who:str): cast a vote for a candidate, e.g., cast(‘John’)
will increment votes[‘John’].
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• method tally(): to display the current vote count.

• Both cast and tally need to lock votes before accessing it

2. Voter(threading.Thread) class: represent a voter who can vote for a candi-
date:

• Constructor method __init__(name:str, election:Election): initial-
ize the voter’s name and the election.

• var semmaphore:threading.Semaphore: control the number of voters
that can vote simultaneously (e.g., 3 at a time).

• Method vote(): pick a candidate (random.choice(election.votes.keys()))
and call election.cast(candidate). Note that before casting the vote,
you will need to acquire (semaphore.acquire()) the semaphore and re-
lease it after voting (semaphore.release()).

3. Officials(threading.Thread) class: represent an election official who will
periodically tally and display the votes.

• Constructor method __init__(election:Election): storing the elec-
tion object.

• Method tally(): call election.tally() to display the current vote
count.

4. __main__: the main/driver code to run the simulation.

• Create a semaphore that allows 3 voters to vote simultaneously.

• Create 20 voters and 4 officials.

• Start the voters and officials using start() and wait for them to finish
using join().

8.4.3 Main Concepts of Concurrency

Short questions or Compare and contrast (if applicable also discuss the benefits and
drawbacks of each)

• Threads and processes. When would you use one over the other?

• Locks, Semaphores, and Monitors

• Deadlock and Live lock

• What is a race condition? How to prevent it?
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Program Verification

In chapter §7 we focus on testing to find bugs. Here we look at verification techniques
to prove the absense of bugs. Like whitebox approaches (§7.4), verification techniques
analyze program source code to reason about its behaviors.

9.1 Hoare Logic

9.1.1 Hoare Tripple

A formal way to specify and verify program S with respect to its specification con-
sisting of the precondition P and postcondition Q is using Hoare logic. The main
idea in this logic is its Hoare Tripple:

{P} S {Q},

which reads: assuming P holds before executing S, and S is executed successfully,
then Q holds. If this is true, we say that the Hoare Tripple is valid, indicating S
satisfies the specification P,Q. Note that S is represented as a single statement or a
sequence of statements, and P,Q are logical expressions or formulae.

For example, the Hoare Triple {x = 5 and y > 2} z := x + y; z := z + 2
{z > 9} is valid because assuming x=5 and y > 2, if z:x +y; z := z + 2 runs
successfully, then we do have z > 9.

Partial and Total Correctness Observe that a Hoare Tripple specifies the pro-
gram post condition behaviors only when it terminates successfully. This is known as
partial correctness, which requires the program to satisfy the postcondition assuming
it terminates. In contrast, total correctness requires the program to terminate and
satisfy the postcondition. For Hoare logic, we focus on partial correctness as it is
easier to prove. Total correctness would require showing program termination, an
undecidable problem in general.

74
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Examples

1. Consider a program S with a single assignment statement x:=5.

The Hoare tripple {True} x := 5 {x > 6} is not a valid tripple, but these
ones are:

1. {True} x := 5 {x=5 or x= 6 or x > 6}

2. {True} x := 5 {x > 1}

3. {True} x := 5 {x = 5}

Moreover, the postcondition in x=5 is strongest because it is more precise
than x > 1 and (x=5 or x=6 or x > 6). In general we want the strongest
(most precise) postcondition (§2.2.2).

2. Consider another program z:= x/y.

These are valid Hoare tripples:

1. {x = 1 & y = 2} z:= x/y {z < 1}

2. {x = 2 & y = 4} z:= x/y {z <1}

3. {0 < x < y & y != 0} z:= x/y {z <1}

Moreover, the precondition 0 < x < y & y != 0 is the weakest precondition
(i.e., it is the least constraint precondition). In general we want the weakest
precondition (§2.2.1).

3. Below are all invalid:

1. {x < y} z:= x/y {z < 1} (counterexample input x=-1, y=0, after exe-
cuting z:=x/y, we do not have z < 1 and instead got a div-by-0 exception)

2. {x = 0} z:= x/y {z < 1} (counterexample input x=0, y=0)
3. {y != 0} z:= x/y {z < 1} (counterexample input x=2 , y=1)
4. {x < y & y != 0} z:= x/y {z <1} (counterexample input x=-2, y=-1)

9.1.2 Verifying Programs using Hoare Logic

We can automatically verify (partial) program correctness by computing the weakest
precondition (WP), which is the least restrictive condition that ensures the postcon-
dition after executing the program. Mores specifically, to prove the Hoare Tripple
{P} S {Q} is valid, i.e., to prove the program S is correct wrt to the precondition P
and postcondition Q, we form a verification condition P => wp(S, Q) and check
that it is valid. Here, the function wp returns the weakest precondition (WP)
allowing the program S to achieve the postcondition Q. Thus, to show the validity of
{P} S {Q}, we show that P implies (=>) the WP of S wrt to Q.
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Tab. 9.1: Weakest Precondition Rules.

Statement S wp(S,Q) Notes

Assignment x:=E Q[E/x] Replace all x’s with E in Q

Sequence S1; S2 wp(S1, wp(S2, Q)) Recursively compute wp

Conditional if b then S1 else S2 b =⇒ wp(S1, Q) ∧ Produce disjunction
b =⇒ wp(S2, Q)

While while b do S I ∧ User supplied loop inv I
I ∧ b =⇒ wp(S, I) ∧
I ∧ b =⇒ Q

9.1.3 Computing Weakest Preconditions

The WP is computed by working backwards from the postcondition Q to the pre-
condition P using the program S. Tab. 9.1 defines the rules for computing the WP
of common program statements (e.g., assignment, sequence, conditional, and while
loop).

Assignment The popular assignment x := E statement assigns the expression E
to a variable x. The WP of an assignment wp(x:=E,Q) is obtained by substituting
all occurrences of x in Q with the expression E.

wp(x:=E, Q) = Q[x/E] (9.1)

Examples

1.

WP(x := 3, x+ y = 10) = 3 + y = 10

= y = 7

Thus, we have {y = 7} x := 3 {x+ y = 10}

2.

WP(x := 3, x+ y > 0) = 3 + y > 0

= y > −3

Thus, we have {y > −3} x := 3 {x+ y > 0}

3.

WP(x := 3, y > 0) = y > 0 # no x in y > 0, so result is just y > 0

Thus, we have {y > 0}x := 3{y > 0}
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List of Statements The WP for a list (sequence or block) of statements is defined
recursively as the WP of the first statement followed by the WP of the rest of the
statements.

wp(S1;S2, Q) = wp(S1, wp(S2, Q)) (9.2)
wp([], Q) = Q (9.3)

Examples

wp([x := x+ 1; y := y ∗ x], y = 2 ∗ z) = wp(x := x+ 1, wp([y := y ∗ x], y = 2 ∗ z))
= wp(x := x+ 1, y ∗ x = 2 ∗ z)
= y ∗ (x+ 1) = 2 ∗ z

Thus, we have {y ∗ (x+ 1) = 2 ∗ z} x := x+ 1; y := y ∗ x {y = 2 ∗ z}

Conditional

The WP of a conditional statement combines the WPs of the two branches using
the implication operator =⇒ .

wp(if b then S1 else S2, Q) = (b =⇒ wp(S1, Q)) ∧ (¬b =⇒ wp(S2, Q)) (9.4)

Examples

•

wp(if x > 0 then y := x+ 2 else y := y + 1, y > x)

= (x > 0 =⇒ wp(y := x+ 2, y > x) ∧ (x ≤ 0 =⇒ wp(y := y + 1, y > x))

= (x > 0 =⇒ x+ 2 > x) ∧ (x ≤ 0 =⇒ y + 1 > x)

= (x > 0 =⇒ 2 > 0) ∧ (x ≤ 0 =⇒ y + 1 > x)

= True ∧ (x ≤ 0 =⇒ y + 1 > x)

= x ≤ 0 =⇒ y + 1 > x

•

wp(if x > 0 then y := x else y := 0, y > 0)

= (x > 0 =⇒ wp(y := x, y > 0)) ∧ (x <= 0 =⇒ wp(y := 0, y > 0))

= (x > 0 =⇒ x > 0) ∧ (x <= 0 =⇒ 0 > 0)

=!(x > 0) ∨ (x > 0)∧!(x <= 0) ∨ False

= True ∧ x > 0

= x > 0
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Instead of using implication =⇒ , which might be confusing to some, we can use
¬ and ∨. This is because a =⇒ b is equivalent to ¬a ∨ b. Thus, the above can be
written as:

wp(if b then S1 else S2, Q) = (¬b ∨ wp(S1, Q)) ∧ (b ∨ wp(S2, Q)) (9.5)

Loop Unlike other statements where we have rules to compute WP automatically,
to obtain the WP of loop, we need to manually supply a loop invariant I. Moreover,
the loop invariant I must be strong enough to ensure the postcondition Q holds when
the loop terminates.

Assume that a loop invariant I is given, the WP of a while loop is as follows:

wp(while [I] b do S,Q)

= I ∧ (I ∧ b) =⇒ wp(S, I) ∧ (I ∧ ¬b) =⇒ Q
(9.6)

Thus, the WP for loop consists of 3 conjuncts:

1. I : the loop invariant (should hold when entering the loop)

2. (I & b) => I : (entering the loop because b is true) I is preserved after
each loop body execution

3. (I & !b) => Q (exiting the loop because b is false), when exiting the loop,
the post condition holds

9.1.4 Verification Condition

Now that we know how to do WP, we can continue with verifiation condition
(VC). Recall that to verify that the program S satisfies the precondition P and
postcondition Q (i.e., the Hoare triple {P} S {Q} is valid), we create the VC P =>
WP(S, Q) and check its validity, i.e., if the VC becomes True. If the VC is valid, we
have proved the program (i.e., it’s correct wrt to the specs); otherwise, we cannot
say anything about the program, i.e., we don’t know if it’s correct or not.

9.2 Exercises

9.2.1 Using the Z3 SMT Solver

Z3 is a theorem prover or SMT constraint solver developed at Microsoft. It has been
employed in various software testing and reasoning tasks. Major tech companies
including MS, Google, Amazon (AWS), NASA, etc use Z3 for a wide-range of projects
to solve problems in software, security, and AI. For example, Amazon AWS runs
billions of Z3 queries everyday1. In this exercise you will be introduced to Z3 and

1https://www.amazon.science/blog/a-billion-smt-queries-a-day
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use it for various reasoning tasks.

Installation and Setup To have Z3 to work with Python, you can install it
various methods including pip or homebrew (Mac) or apt-get (Linux). You can
search online for the installation method that works best for your system.

To ensure Z3 is installed correctly, you can try to import z3 in Python. If you
do not get an error, then Z3 is installed correctly.

Your Tasks You write Python code using Z3 for various problems below. You can
use the Z3 API or use Google to find the relevant information like Z3’s method names,
e.g., z3.solve(...) for satisfiability checking and z3.prove(...) for proving or
validy checking.

1. Boolean Logic

(a) Create boolean variables p, q, r

(b) Check if the formula p ∨ q is satisfiable.

(c) Prove transitivity, i.e., show that (p = q ∧ q = r) =⇒ p = r.

(d) Show that (p ∧ q) =⇒ p is a tautology (valid).

(e) Prove that p =⇒ q is equivalent to ¬p ∨ q.

2. First-Order Logic over the Integers

(a) Create integer variables x, y, z.

(b) Show that x > 3 =⇒ x > 2

(c) Prove that x > 3 ∧ y > 3 =⇒ x+ y > 6

(d) Solve for x, y such that x+ y = 10 and x < 0

(e) Show the transitive x > y ∧ y > z =⇒ x > z

(f) Confirm that x > 2 and x < 2 is unsatisfiable.

(g) Prove that x ≤ y and x ≥ y is equivalent to x = y.

3. Using symbolic execution with Z3 to find inputs leading to each location in the
program below. For this you will do 2 things: (i) create a table like Tab. 7.1
to show the path conditions and program states, and (ii) provide the Python
Z3 code to solve for the inputs (e.g., if the PC is x > 0 and y < 0, you can
just use z3.solve(PC) to get the inputs and show the values of x, y leading to
that location.

void bar(int x, int y) {
int a = 0, b = 0;
int z = x + y + a;

// L1
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if (x > 5) {
int w = z - x + b;
// Location 2
if (w < 3) {

// L3
} else {

// L4
}

} else {
int v = z + 2;
// L5
if (v > y) {

// L6
} else {

// L7
}

}
}

What to submit You will submit a Python file with the Z3 code for the above
problems. As usual be sure to include instructions (could be comments in the Python
code) and screenshots on how to run the code.

You will also submit a text (or doc or pdf) file showing the symbolic execution
table and the inputs leading to each location in the program.

9.2.2 Hoare Triples

Fill in P,S,Q to make the following Hoare Triples valid. Remember that we want
the strongest postcondition Q and weakest precondition P.

1. {P} x:=3 {x = 8}

2. {P} x:= y - 3 {x = 8}

3. {x = y} S {x = y}

4. {x < 0} while(x!=0) do x := x - 1 {Q}
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Design Patterns

10.1 Creational Patterns

These patterns focuses on creating objects depending on their uses.

10.1.1 Singleton

Each class has only one instance. Examples of singletons include logging (for logging
messages) and configuration (for reading configuration files).
class Singleton:

def __new__(cls):
if not hasattr(cls , ’instance ’):

cls.instance = super(Singleton , cls). __new__(cls)
return cls.instance

s1 = Singleton (); s2 = Singleton ()
assert(s1 is s2) # both refer to the same object

10.1.2 Factory Method

class Animal:
def whoami(self):

pass

class Dog(Animal ):
def whoami(self):

return "Woofff ..."

class Cat(Animal ):
def whoami(self):

return "Meoww ..."

class AnimalFactory:
@staticmethod
def create(typ):

if typ == "dog":
return Dog()

elif typ == "cat":
return Cat()

return None

animal = AnimalFactory.create("dog")
print(animal.whoami ())
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10.1.3 Abstract Factory

10.1.4 Builder

10.1.5 Prototype

10.2 Structural Patterns

These focus on how objects are composed or structured.

10.2.1 Adapter

10.3 Behavioral Patterns

10.4 Composition over Inheritance
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Specification

11.1 Specifications and Specificand Sets

The purpose of a specification is to define the behavior of an abstraction. Users will
rely on this behavior, while implementers must provide it. An implementation that
provides the described behavior is said to satisfy the specification. The purpose of
a specification is to define the behavior of an abstraction. An implementation is
said to satisfy a specification if it provides the described behavior. The meaning of
a specification is the set of program modules that satisfy it, which are called the
specifcand set.

For example, the following specification is satisfied by any function where y is
greater than 0 and a value greater than y is returned. An infinite number of programs
can be included in this specificand set.

def specification(y):
"""
REQUIRES: y > 0
EFFECTS: Returns x such that x > y
"""
return y + 1

11.2 Some Criteria for Specifications

Restrictiveness, generality, and clarity are three important attributes for developing
good specifications.

11.2.1 Restrictiveness

The specification should be restrictive enough to eliminate any implementations that
the user does not want. The requirements should be included in the REQUIRES
clause, or else the specifications may not be restrictive enough.
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For example, the code below gives three specifications for an elems iterator for a
bag (multiset) of integers. A multiset stores unordered values that may be duplicate.

def elems ():
"""
EFFECTS: Returns a generator that produces every element of this (as
Integers ).
"""

This first specification doesn’t address what happens if changes are made to the bag
while the iterator is in use.

def elems ():
"""
EFFECTS: Returns a generator that produces every element of this
(as Integers ).
REQUIRES: this not be modified while the generator is in use.
"""

The second specification solves this by adding a requirement that the bag does not
change while the iterator is in use. However, it still fails to specify the order that
elements are returned in, what is done when duplicate elements are present, and
that only elements in the bag are returned.

def elems ():
"""
EFFECTS: Returns a generator that produces every element of this
(asIntegers), in arbitrary order. Each element is
produced exactly the number of times it occurs in this.
REQUIRES: this not be modified while the generator is in use.
"""

The third specification addresses all these matters, but fails to identify when excep-
tions should be signaled and does not identify behavior at boundary cases. Figure
9.2 is restrictive enough.

11.2.2 Generality

A specification should avoid precluding acceptable implementations. The goal is to
make the most general possible specification. For example, the specification below
only returns approximations that are greater than or equal to the square root itself,
which can be inefficient.

def sqrt (sq: float , e: float)
"""
REQUIRES: sq >= 0 && e > .001
EFFECTS: Returns rt such that 0 <= (rt*rt - sq) <= e.
"""

The definitional style of specification explicitly describes properties that specificand
members should exhibit. The specification below is shorter and more open ended
in its explanation of how to implement the function. For example, the implementor
can choose to examine the array elements in any order, not just first to last.

Operational specification styles provide instructions to construct the properties.
They are easily constructed because their construction is similar to programming.
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However, they are usually longer than definitional specifications and can lead to over-
specification. For example, the following program specifies which index to return
when x is a duplicate, which might be too restrictive.

def search (array , x: int)
"""
EFFECTS: If a is null throws NullPointerException else examines
each element in turn and returns the index of the first one
that is equal to x. Signals NotFoundException if none equals x.
"""

Definitional specifications often support more generality than operational speci-
fications.

11.2.3 Clarity

A specification should be clear and easy for users to understand. On top of being
restrictive and general, specifications should be well modularized, nicely commented,
and easy-to-read. The most dangerous issue with unclear specifications is misinter-
pretation.

For example, the implementer of elems may decide to produce each element the
number of times it occurs in the bag, while the user expects each element to be
produced only once.

Two important factors in making clear specifications are conciseness and re-
dundancy. The longer a specification is, the more likely it is to contain errors, so it
is best to avoid pointless verbosity. When making a local change to a program, try
to consolidate the relevant information with the existing specification rather than
just adding to it.

While redundancy is less concise, it should be used to reduce the likelihood of
misinterpretation and to catch errors. Examples are a form of redundancy. A good
way to indicate that information is redundant is to preface it with "i.e." or "e.g.".
Consider the following.

def subset (s1: IntSet , s2: IntSet ):
"""
EFFECTS: If s1 or s2 is null throws NullPointerException else
returns true if s1 is a subset of s2 else returns false.
"""

This first specification can cause confusion about whether the author meant to say
subset or proper subset.

def subset (s1: IntSet , s2: IntSet ):
"""
EFFECTS: If s1 or s2 is null throws NullPointerException else
returns true if s1 is a subset of s1 is an element of s2 else returns
false.
"""

The second specification leaves no doubt about the first specification issue, but is a
little harder to read. However, it does not explicitly state that the function should
be a subset test.
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def subset (s1: IntSet , s2: IntSet ):
"""
EFFECTS: If s1 or s2 is null throws NullPointerException else
returns true if s1 is a subset of s2 else returns false , i.e.,
returns true if every element of s1 is an element of s2 else returns
false.
"""

The third specification is sufficiently clear.
Redundancy makes mistakes in a specification more evident and provides the

reader with the opportunity to notice them. It also provides clarity when informal
specifications might lead to different interpretations.

11.3 Why Specifications?

Abstraction decomposes a program into modules, and those modules require some
description through specifications. A specification describes an agreement between
providers and users of a service, which makes it possible to separate consideration
of the implementation from the use of a program unit.

Furthermore, they emphasize the abstraction being defined, encouraging users
and implementers alike to pay attention to its intended use.

Specifications are useful for program documentation. The goal is to write spec-
ifications that are both restrictive enough and general enough. Writing them also
encourages prompt attention to inconsistencies, incompleteness, and ambiguities.

Since specifications become irrelevant only when their abstraction is obsolete,
they should continue to evolve as long as the program evolves.

Finally, a specification can be a helpful maintenance tool. The existence of clear
and accurate documentation is a prerequisite for efficient and effective maintenance.
They define the constraints that must be observed in correcting any error, which
helps us avoid introducing new errors while correcting old ones.

11.4 Exercises

11.4.1 IntBag Abstraction

Provide a specification for an IntBag abstraction that is sufficiently restrictive, gen-
eral, and clear.

1. Include the following functions:

• create an empty bag

• insert and remove and element

• test if the bag contains an element

• get the size of the bag
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• get the number of times an element occurs

• display the elements in the bag

2. Discuss the restrictiveness, generality, and clarity of one of the above specifi-
cations.
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More Examples

B.1 ADT

B.1.1 Stack ADT
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class Stack:
"""
Overview: Stack is a mutable ADT that represents a collection of elements in LIFO.
AF(c) = the sequence of elements in the stack in sorted order from bottom to top.
rep -inv:

1. elements is a list (could be empty list , which represents and empty stack).
2. The top of the stack is always the last element in the list.

"""

def __init__(self):
"""
Constructor
EFFECTS: Initializes an empty stack.
MODIFIES: self
"""
self.elements = []

def repOK(self):
"""
EFFECTS: Returns True if the rep -invariant holds , otherwise False.
The invariant checks:
1. elements is a list.
2. If the stack is non -empty , the top of the stack is the last element in the list.
"""
# Check that elements is a list
if not isinstance(self.elements , list):

return False

# If the stack is not empty , ensure that the top is the last element in the list.
# This is implicitly guaranteed by the use of ‘list.append ‘ for push and ‘list.pop ‘ for pop ,
# so no further explicit check is needed for the "top as last element ."
return True

def push(self , value):
"""
MODIFIES: self
EFFECTS: Adds value to the top of the stack.
"""
self.elements.append(value)

def pop(self):
"""
MODIFIES: self
EFFECTS: Removes and returns the top element from the stack.
Raises an exception if the stack is empty.
"""
if self.is_empty ():

raise Exception("Stack is empty")
return self.elements.pop()

def is_empty(self):
"""
EFFECTS: Returns True if the stack is empty , otherwise False.
"""
return len(self.elements) == 0

def __str__(self):
"""
EFFECTS: Returns a string representation of the stack ,

showing the elements from bottom to top.
"""
# The abstraction function maps the list of elements to a stack view
return f"Stack({self.elements })"

Fig. B.1: Stack ADT
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