
CIVL: A Symbolic Execution Tool for C Programs

CSCE 467, Group 0: ThanhVu Nguyen

Introduction. Input generation is an important testing approach to find inputs reaching interesting, e.g.,
buggy, program locations. The two main input generation techniques are blackbox and whitebox testings.
Blackbox techniques such as fuzzing [?] generate random inputs to test programs whose source code might
not be available. Fuzzing techniques are typically fast, but their randomly-generated inputs often fail to
expose hard-to-reach, buggy locations. In contrast, whitebox techniques such as symbolic execution [?, ?]
analyze the program structure to explicitly generate inputs to reach these difficult program locations.

In this project, we will study CIVL [?], a mature and powerful symbolic execution tool for C programs.
CIVL supports normal, sequential C programs and parallel/concurrent C programs (e.g., using parallel mod-
els such as MPI, CUDA, etc). At high level, the CIVL framework consists of three parts: (i) a core pro-
gramming language, CIVL-C, which is a C-like language extended with primitives to represent concurrency
features, (ii) a checker that uses symbolic execution to verify a number of safety properties of C programs,
and (iii) a number of translators to convert commonly-used concurrency languages/API’s to CIVL-C (e.g.,
MPI, OpenMP, PThreads, CUDA).

Proposed Works. We will perform three tasks for this project. First, we will describe the underlying
technical approach used in CIVL. We will read the CIVL’s research paper describing the main ideas used
in the tool (e.g., the CIVL-C language, the symbolic execution engine, and translators). Next, we will show
how CIVL works with detailed examples. We will demonstrate the capabilities of CIVL through a wide-
variety of interesting and challenging example programs (e.g., those from the CIVL’s own benchmark suite).
We will also demonstrate the limitations of CIVIL through example programs. Third, we will use CIVL to
test a real-world program. We will search GitHub for a popular, medium-sized C program and apply CIVL
over it to check for program assertion violations and common errors such as NULL-pointer dereferencing
and division by zero.

Timeline. We have approximately 6 weeks to work on this project. We will use a week to read and under-
stand CIVL. We will spend the next 3 weeks to find examples to demonstrate how CIVL works and apply
CIVL to a real-world example. To help prepare for the presentation and final report, we will documenting
all our findings and examples for each of these tasks. We use two weeks to for writing teh report and prepare
for the presentation.

1


