Program Verification using Hoare logic

ThanhVu Nguyen CSCE 467 Adapted from Jonathan Aldrich's Program Analysis slides

November 19, 2019

Big-Step Operational Semantics

E-Assign
$$\frac{E \vdash a \Downarrow n}{E \vdash x := a \Downarrow E\{x \mapsto n\}}$$
E-Skip
$$\overline{E \vdash \text{skip} \Downarrow E}$$
E-Seq
$$\frac{E \vdash S1 \Downarrow E' \quad E' \vdash S1 \Downarrow E''}{E \vdash S1; S2 \Downarrow E''}$$
E-IfTrue
$$\frac{E \vdash b \Downarrow \text{True} \quad E \vdash S1 \Downarrow E'}{E \vdash \text{if } b \text{ then } S1 \text{ else } S2 \Downarrow E'}$$
E-IfFalse
$$\frac{E \vdash b \Downarrow \text{False} \quad E \vdash S2 \Downarrow E''}{E \vdash \text{if } b \text{ then } S1 \text{ else } S2 \Downarrow E''}$$
E-While
$$\frac{E \vdash c \Downarrow \text{True} \quad E \vdash S; \text{ while } b \text{ do } S \Downarrow E'}{E \vdash \text{ while } b \text{ do } S \Downarrow E'}$$

$$\frac{E \vdash c \Downarrow \text{False}}{E \vdash \text{ while } b \text{ do } S \Downarrow E'}$$

Axiomatic Semantics

- Big step semantics: relates intial state to final one,
 - e.g., if we start the program with the env/state $\{x \mapsto 3, y \mapsto 4\}$, we get the new env $\{x \mapsto 7, y \mapsto 2\}$.
- Axiomantic Semantics: instead of single state (e.g., $\{x \mapsto 3, y \mapsto 4\}$, work with a *set* of states, described by a formula
 - e.g., if we start the program with variables having values satisfying x >= 0, y >= 0, we get a new state that satisfy $x < 100, y = x^2$.

Hoare Tripple

$$\{P\} S \{Q\}$$

- By Tony Hoare
- Reasoning about partial program correctness using pre- and postconditions
- Hoare Tripple
 - P: a formula representing the precondition
 - Q: a formula representing the postcondition
 - \bullet Read: assume P holds, if S successfully executes, then Q holds
 - P and Q: specifications of the program S
- Partial Correctness: assume S terminates
- Total Correctness: require S terminates

4

Examples of Hoare Tripples

- **1** True $\}$ x:=5 $\{$ x \equiv 5 $\}$
- ② $\{x \equiv y\} \ x := x + 3 \ \{x \equiv y + 3\}$
- $\{x>-1\}$ x:=2*x + 3 {x > 1}
- **1** $\{x \equiv a\}$ if x < 0 then $x := -x \{x \equiv |a|\}$
- **6** { False } x = 3 { $x \equiv 8$ }

Examples of Hoare Tripples

- $\{ \text{True} \} \text{ x} = 5 \{ \text{ x} \equiv 5 \}$
- ② $\{x \equiv y\} \ x := x + 3 \ \{x \equiv y + 3\}$
- $\{x>-1\}$ x:=2*x + 3 {x > 1}
- **6** { False } x = 3 { $x \equiv 8$ }

In-class Questions:

- $\bullet \ \{x \equiv y\} ??? \{ x \equiv y \}$
- $\{???\}$ x:= y 3 $\{x \equiv 8\}$
- $\{x<0\}$ while(x!=0) x:=x 1 $\{???\}$

Examples of Hoare Tripples

- **1** $\{ \text{True } \} \text{ x} := 5 \{ \text{ x} \equiv 5 \}$
- ② $\{x \equiv y\} \ x := x + 3 \ \{x \equiv y + 3\}$
- $\{x>-1\}$ x:=2*x + 3 {x > 1}
- **1** $\{x \equiv a\} \text{ if } x < 0 \text{ then } x := -x \{x \equiv |a|\}$
- **5** { False } x = 3 { $x \equiv 8$ }

In-class Questions:

- $\bullet \ \{x \equiv y\} ??? \{ x \equiv y \}$
- $\{???\}$ x:= y 3 $\{x \equiv 8\}$
- $\{x<0\}$ while (x!=0) x:=x 1 $\{???\}$
 - Not valid for Total Correctess

Strongest Postconditions

Which are valid?

- $\{x \equiv 5\} x = x^2 \{true\}$
- $\{x \equiv 5\} x := x^2 \{x > 0\}$
- $\bullet \ \{ x \equiv 5 \} \ x := x^2 \ \{ x \equiv 10 \lor x \equiv 5 \}$
- $\{x \equiv 5\} x = x^2 \{x \equiv 10\}$

Strongest Postconditions

Which are valid?

- $\{x \equiv 5\} x:=x*2 \{true\}$
- $\{x \equiv 5\} x := x^2 \{x > 0\}$
- $\{x \equiv 5\} x := x^2 \{x \equiv 10 \lor x \equiv 5\}$
- $\{x \equiv 5\} x := x^2 \{x \equiv 10\}$
- All are valid, but which one is the most useful?

Strongest Postconditions

Which are valid?

- $\{x \equiv 5\} x = x^2 \{true\}$
- $\{x \equiv 5\} x := x^2 \{x > 0\}$
- $\{x \equiv 5\} x := x^2 \{x \equiv 10 \lor x \equiv 5\}$
- $\{x \equiv 5\} x := x^2 \{x \equiv 10\}$
- All are valid, but which one is the most useful?
 - $x \equiv 10$ is the strongest postcondition
 - In general, we want strong postconditions

Definition

- In { P } S { Q } , Q is the strongest postcondition if $\forall Q'.\{P\} S \{Q'\}$, $Q \Rightarrow Q'$
- Ex: $x \equiv 10$ is the *strongest* postcondition
 - $\bullet \ x \equiv 10 \Rightarrow true$
 - $x \equiv 10 \Rightarrow x > 0$
 - $x \equiv 10 \Rightarrow (x \equiv 10 \lor x \equiv 5)$
 - $\bullet \ x \equiv 10 \Rightarrow x \equiv 10$

Weakest Preconditions

- $\{x \equiv 5 \land y \equiv 10\} \text{ z:=x/y } \{z < 1\}$
- $\{x < y \land y > 0\}$ z:=x/y $\{z < 1\}$
- $\{ y \neq 0 \land x/y < 1 \} z = x/y \{ z < 1 \}$
- All are true, but which one is the most useful?

7

Weakest Preconditions

- $\{x \equiv 5 \land y \equiv 10\} \text{ z:=x/y } \{z<1\}$
- $\{x < y \land y > 0\}$ z:=x/y $\{z < 1\}$
- $\{ y \neq 0 \land x/y < 1 \} z = x/y \{ z < 1 \}$
- All are true, but which one is the most useful?
 - $y \neq 0 \land x/y < 1$ is the *weakest* precondition
 - In general, we want weak preconditions (allowing us to run the program with fewer assumptions or restrictions)

Definition

• In $\{P\}$ S $\{Q\}$, P is the weakest precondition if $\forall P'. \{P'\}$ S $\{Q'\}$, $P' \Rightarrow P$

7

Program Verification

Verification using Hoare Triples and Weakest Preconditions

- To prove $\{P\} S \{Q\}$ is valid, we check $P \Rightarrow wp(S,Q)$
- wp: a function returning the weakest precondition allowing the execution of S to achieve Q
- Need to define wp for different statements in WHILE

Find the weakest precondition P

• $\{P\} x := 3 \{x + y \equiv 10\}$?

Find the weakest precondition P

- $\{P\} x := 3 \{x + y \equiv 10\}$?
 - A: y ≡ 7
 - Check $\{y\equiv 7\}$ $x := 3 \{x + y \equiv 10\}$

Find the weakest precondition P

- $\{P\} x := 3 \{x + y \equiv 10\}$?
 - A: y ≡ 7
 - Check $\{y \equiv 7\} x := 3 \{x + y \equiv 10\}$
- $\{P\} x := 3 \{x + y > 0\}$

Find the weakest precondition P

- $\{P\} x := 3 \{x + y \equiv 10\}$?
 - A: $y \equiv 7$
 - Check $\{y \equiv 7\} x := 3 \{x + y \equiv 10\}$
- $\{P\} x := 3 \{x + y > 0\}$
 - A: 3 + y > 0, (or y > -3)
 - Check $\{y > -3\}$ x:=3 $\{x + y > 0\}$

Find the weakest precondition P

```
• { P } x := 3 \{ x + y \equiv 10 \} ?

• A: y \equiv 7

• Check { y \equiv 7} x := 3 \{ x + y \equiv 10 \}
```

- $\{P\} x := 3 \{x + y > 0\}$
 - A: 3 + y > 0, (or y > -3)
 - Check $\{y > -3\} x := 3 \{x + y > 0\}$

WP for Assignment

$$wp(x:= E, Q) = Q_x^E$$

ç

Find the weakest precondition P

- $\{P\} x := 3 \{x + y \equiv 10\}?$ • A: $y \equiv 7$
 - Check $\{v \equiv 7\} x := 3 \{x + v \equiv 10\}$
- $\{P\} x := 3 \{x + y > 0\}$
 - A: 3 + y > 0, (or y > -3)
 - Check $\{y > -3\}$ x:=3 $\{x + y > 0\}$

WP for Assignment

$$wp(x := E, Q) = Q_x^E$$

- wp(x:=3, $x + y \equiv 10$) = $(x + y \equiv 10)_x^3 = 3 + y = 10 = y = 7$
- wp(x:=3, x + y > 0) = $(x + y > 0)_x^3 = 3 + y > 0$

9

WP for While statements

Statement	\mathbf{S}	wp(S,Q)
Assignment	x := e	Q_x^e
Skip	skip	Q
Sequential	S1;S2	wp(S1, wp(S2,Q))
Conditional	if b then S1 else S2	$b \Rightarrow \operatorname{wp}(S1, Q) \land \neg b \Rightarrow \operatorname{wp}(S2, Q)$

WP for While statements

Statement	\mathbf{S}	wp(S,Q)
Assignment	x := e	Q_x^e
Skip	skip	Q
Sequential	S1;S2	wp(S1, wp(S2,Q))
Conditional	if b then S1 else S2	$b \Rightarrow \operatorname{wp}(S1, Q) \land \neg b \Rightarrow \operatorname{wp}(S2, Q)$

In-class Exercise

Find the weakest preconditions for

- **2** $\{??\}$ x := x + 1; y := y * x $\{y \equiv 2 * z\}$
- **3** $\{??\}$ if (x > 0) then y := x else $y := 0 \{ y > 0 \}$

Loops

- wp(while b do S) = ??
- Idea: use loop invariant
 - holds when the loop is entered
 - \bullet preserves after the loop body is executed

Loops

- wp(while b do S) = ??
- Idea: use loop invariant
 - holds when the loop is entered
 - preserves after the loop body is executed

Example

```
\{N \ge 0\}
i := 0;
while (i < N)
i := N;
```

Which ones are loop invariants? For those that are not, explain why

- $\mathbf{0} \quad \mathbf{i} \equiv 0$
- $\mathbf{0}$ $i \equiv N$
- $N \geq 0$
- $\mathbf{0}$ $i \leq N$

WP for Loop

$$wp(while b do S) = (I) \land (I \land b \Rightarrow wp(S, I)) \land (I \land \neg b \Rightarrow Q)$$

Find/Guess a loop invariant I:

- $P \Rightarrow I$: initially I is true wrt P (base case)
- $I \wedge b \Rightarrow I$: I is preserved after each execution (inductive case)
- $I \wedge \neg B \Rightarrow Q$: if the loop terminates, the post condition holds (Partial correctness)

```
 \begin{cases} N \geq 0 \rbrace \\ \text{i} := 0; \\ \text{while (i < N)} \\ \text{i} := N; \\ \{ i \equiv N \}
```

- Which ones would be good invariant to find the wp?
 - **1** $N \ge 0$
 - $\mathbf{2}$ $i \leq N$

WP for Loop

$$wp(while b do S) = (I) \land (I \land b \Rightarrow wp(S, I)) \land (I \land \neg b \Rightarrow Q)$$

Find/Guess a loop invariant I:

- $P \Rightarrow I$: initially I is true wrt P (base case)
- $I \wedge b \Rightarrow I$: I is preserved after each execution (inductive case)
- $I \wedge \neg B \Rightarrow Q$: if the loop terminates, the post condition holds (Partial correctness)

```
 \begin{cases} N \geq 0 \\ \mathbf{i} := 0; \\ \mathbf{while} \ (\mathbf{i} < \mathbf{N}) \\ \mathbf{i} := \mathbf{N}; \\ \{i \equiv N \} \end{cases}
```

• Which ones would be good invariant to find the wp?

- $0 N \ge 0$
- i ≤ N
- Find the wp for the loop
- Prove the program is correct (show that $P \Rightarrow wp$)

In-class Exercise

```
 \begin{cases} x \leq 10 \end{cases}  while x != 10  x := x + 1   \{ x \equiv 10 \}
```

- Find an invariant I for the loop
- Find the wp of the loop
- \bullet Prove the program is correct