Static Analysis

ThanhVu Nguyen
CSCE467

October 31, 2019

“Program testing can be used to show the presence of bugs, but never to
show their absence.” (DJK, 1972)

What is Static Analysis?

Static Analysis
A method for automated reasoning on a representation of program

e Static: apply to some static representation (e.g., source code) of a
program (in contrast to testing, profiling, or run-time checking)

o Automated: “push-button” technology, i.e., little user
intervention

Applications

e Compilers: optimization (runtime, memory), remove dead code,
etc

e Verification: verify program correctness

The Dream

Static Analyzer
e Inputs: program, specifications (pre/post conditions, assertions)

e Output: correct/safe (provable), incorrect/unsafe (witness)

Requirements for a Perfect Analyzer
e Soundness: don’t miss errors (no false negative)

e Completeness: don’t raise false alarms (no false positive)

@ Termination: always terminate

Question: is testing sound, complete, or terminate ?

False and True Positives

Type I error
(false positive)

Type II error
(false negative)

"‘I"ou’re nn-t._-'
A, qpregnar_it J

The Issue

Decision Problems
@ Is the program P free of null ptr error?
@ Does the program P satisfy given some given specification S7?

@ Does the program P terminate?

Rice Theorem (1953)

All non-trivial semantic questions about programs from a universal
programming language are undecidable.

Approximation / Abstraction

Example: 1 =42Cx>40Cx>0Cx e 2

Approximate allows decidability and efficiency

The approximation must still be sound , (often) sacrifice
completeness, should preserve termination

Properties:
e Precision: must still be precise enough to give some useful answer
o Efficiency: time/space usage
e Scalability: work with realistic, real world programs

The WHILE language

Category Domain Meta variable
Numbers Z={0,1,-1,...} z
Truth values B={T,F} t
Variables Var ={z,y,...} T
Arithmetic expressions AExp a
Boolean expressions BExp b
Commands (statements) Cmd c

Context-Free Grammar of WHILE

ax= z|z|al+a2lal —a2]alx*a2 e AExp
b= t|lal=a2|al >a2|-b|blAb2|blVDb2ec BExp
cu= skip|z:=al

if b then c1 else ¢2 end |
while b do c end € Cmd |
cl; c2

Example of a WHILE program

X := 6;

y = T7;

z := 0;

while x > 0 do
X = x - 1;
v 1= y;
while v > 0 do

	Intro

