
Static Analysis

ThanhVu Nguyen
CSCE467

October 31, 2019

1

“Program testing can be used to show the presence of bugs, but never to
show their absence.” (DJK, 1972)

2

What is Static Analysis?

Static Analysis

A method for automated reasoning on a representation of program

Static: apply to some static representation (e.g., source code) of a
program (in contrast to testing, profiling, or run-time checking)

Automated: “push-button” technology, i.e., little user
intervention

Applications

Compilers: optimization (runtime, memory), remove dead code,
etc

Verification: verify program correctness

3

The Dream

Static Analyzer

Inputs: program, specifications (pre/post conditions, assertions)

Output: correct/safe (provable), incorrect/unsafe (witness)

Requirements for a Perfect Analyzer

Soundness: don’t miss errors (no false negative)

Completeness: don’t raise false alarms (no false positive)

Termination: always terminate

Question: is testing sound, complete, or terminate ?

4

False and True Positives

5

The Issue

Decision Problems

Is the program P free of null ptr error?

Does the program P satisfy given some given specification S?

Does the program P terminate?

Rice Theorem (1953)

All non-trivial semantic questions about programs from a universal
programming language are undecidable.

6

Approximation / Abstraction

Example: x = 42 ⊆ x ≥ 40 ⊆ x ≥ 0 ⊆ x ∈ Z

Approximate allows decidability and efficiency

The approximation must still be sound , (often) sacrifice
completeness, should preserve termination

Properties:

Precision: must still be precise enough to give some useful answer
Efficiency: time/space usage
Scalability: work with realistic, real world programs

7

The WHILE language

Category Domain Meta variable

Numbers Z = {0, 1,−1, . . . } z
Truth values B = {T, F} t
Variables V ar = {x, y, ...} x
Arithmetic expressions AExp a
Boolean expressions BExp b
Commands (statements) Cmd c

Context-Free Grammar of WHILE

a ::= z | x | a1 + a2 |a1− a2 | a1 ∗ a2 ∈ AExp
b ::= t | a1 = a2 | a1 > a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp
c ::= skip | x := a |

if b then c1 else c2 end |
while b do c end ∈ Cmd |
c1; c2

8

Example of a WHILE program

x := 6;

y := 7;

z := 0;

while x > 0 do

x := x - 1;

v := y;

while v > 0 do

v := v - 1;

z := z + 1;

end

end

9

	Intro

