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“Program testing can be used to show the presence of bugs, but never to
show their absence.” (DJK, 1972)



What is Static Analysis?

Static Analysis
A method for automated reasoning on a representation of program

e Static: apply to some static representation (e.g., source code) of a
program (in contrast to testing, profiling, or run-time checking)

o Automated: “push-button” technology, i.e., little user
intervention

Applications

e Compilers: optimization (runtime, memory), remove dead code,
etc

e Verification: verify program correctness




The Dream

Static Analyzer
e Inputs: program, specifications (pre/post conditions, assertions)

e Output: correct/safe (provable), incorrect/unsafe (witness)

Requirements for a Perfect Analyzer
e Soundness: don’t miss errors (no false negative)

e Completeness: don’t raise false alarms (no false positive)

@ Termination: always terminate

Question: is testing sound, complete, or terminate ?



False and True Positives

Type I error
(false positive)

Type II error
(false negative)
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The Issue

Decision Problems
@ Is the program P free of null ptr error?
@ Does the program P satisfy given some given specification S7?

@ Does the program P terminate?

Rice Theorem (1953)

All non-trivial semantic questions about programs from a universal
programming language are undecidable.




Approximation / Abstraction

Example: 1 =42Cx>40Cx>0Cx e 2

Approximate allows decidability and efficiency

The approximation must still be sound , (often) sacrifice
completeness, should preserve termination

Properties:
e Precision: must still be precise enough to give some useful answer
o Efficiency: time/space usage
e Scalability: work with realistic, real world programs



The WHILE language

Category Domain Meta variable
Numbers Z={0,1,-1,...} z
Truth values B={T,F} t
Variables Var ={z,y,...} T
Arithmetic expressions AExp a
Boolean expressions BExp b
Commands (statements) Cmd c

Context-Free Grammar of WHILE

ax= z|z|al+a2lal —a2]alx*a2 e AExp
b= t|lal=a2|al >a2|-b|blAb2|blVDb2ec BExp
cu= skip|z:=al

if b then c1 else ¢2 end |
while b do c end € Cmd |
cl; c2




Example of a WHILE program

X := 6;

y = T7;

z := 0;

while x > 0 do
X = x - 1;
v 1= y;
while v > 0 do
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